Merge b3a6082223 ("Merge branch 'for-v5.6' of git://git.kernel.org:/pub/scm/linux/kernel/git/jmorris/linux-security") into android-mainline

Baby steps in the 5.6-rc1 merge cycle to make things easier to review
and debug.

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I084fc068d4c94625e63441029e08e143146d97b7
This commit is contained in:
Greg Kroah-Hartman 2020-02-03 10:13:20 +00:00
commit 2b0f7f511d
705 changed files with 30405 additions and 8899 deletions

View file

@ -25,11 +25,11 @@ Description:
lsm: [[subj_user=] [subj_role=] [subj_type=]
[obj_user=] [obj_role=] [obj_type=]]
option: [[appraise_type=]] [template=] [permit_directio]
[appraise_flag=]
[appraise_flag=] [keyrings=]
base: func:= [BPRM_CHECK][MMAP_CHECK][CREDS_CHECK][FILE_CHECK][MODULE_CHECK]
[FIRMWARE_CHECK]
[KEXEC_KERNEL_CHECK] [KEXEC_INITRAMFS_CHECK]
[KEXEC_CMDLINE]
[KEXEC_CMDLINE] [KEY_CHECK]
mask:= [[^]MAY_READ] [[^]MAY_WRITE] [[^]MAY_APPEND]
[[^]MAY_EXEC]
fsmagic:= hex value
@ -42,6 +42,9 @@ Description:
appraise_flag:= [check_blacklist]
Currently, blacklist check is only for files signed with appended
signature.
keyrings:= list of keyrings
(eg, .builtin_trusted_keys|.ima). Only valid
when action is "measure" and func is KEY_CHECK.
template:= name of a defined IMA template type
(eg, ima-ng). Only valid when action is "measure".
pcr:= decimal value
@ -113,3 +116,12 @@ Description:
Example of appraise rule allowing modsig appended signatures:
appraise func=KEXEC_KERNEL_CHECK appraise_type=imasig|modsig
Example of measure rule using KEY_CHECK to measure all keys:
measure func=KEY_CHECK
Example of measure rule using KEY_CHECK to only measure
keys added to .builtin_trusted_keys or .ima keyring:
measure func=KEY_CHECK keyrings=.builtin_trusted_keys|.ima

View file

@ -17,6 +17,9 @@ Required properties:
* "arb" : memory ARB line (required)
* "rst" : dedicated device reset line (optional)
- #sound-dai-cells: must be 0.
- amlogic,fifo-depth: The size of the controller's fifo in bytes. This
is useful for determining certain configuration such
as the flush threshold of the fifo
Example of FRDDR A on the A113 SoC:
@ -27,4 +30,5 @@ frddr_a: audio-controller@1c0 {
interrupts = <GIC_SPI 88 IRQ_TYPE_EDGE_RISING>;
clocks = <&clkc_audio AUD_CLKID_FRDDR_A>;
resets = <&arb AXG_ARB_FRDDR_A>;
fifo-depth = <512>;
};

View file

@ -8,7 +8,12 @@ three substreams within totally 10 channels.
Required properties:
- compatible : Contains "fsl,imx35-asrc" or "fsl,imx53-asrc".
- compatible : Compatible list, should contain one of the following
compatibles:
"fsl,imx35-asrc",
"fsl,imx53-asrc",
"fsl,imx8qm-asrc",
"fsl,imx8qxp-asrc",
- reg : Offset and length of the register set for the device.
@ -35,6 +40,11 @@ Required properties:
- fsl,asrc-width : Defines a mutual sample width used by DPCM Back Ends.
- fsl,asrc-clk-map : Defines clock map used in driver. which is required
by imx8qm/imx8qxp platform
<0> - select the map for asrc0 in imx8qm/imx8qxp
<1> - select the map for asrc1 in imx8qm/imx8qxp
Optional properties:
- big-endian : If this property is absent, the little endian mode

View file

@ -1,10 +1,16 @@
GTM601 UMTS modem audio interface CODEC
This device has no configuration interface. Sample rate is fixed - 8kHz.
This device has no configuration interface. The sample rate and channels are
based on the compatible string
"option,gtm601" = 8kHz mono
"broadmobi,bm818" = 48KHz stereo
Required properties:
- compatible : "option,gtm601"
- compatible : one of
"option,gtm601"
"broadmobi,bm818"
Example:

View file

@ -0,0 +1,55 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/sound/ingenic,codec.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Ingenic JZ47xx internal codec DT bindings
maintainers:
- Paul Cercueil <paul@crapouillou.net>
properties:
$nodename:
pattern: '^audio-codec@.*'
compatible:
oneOf:
- const: ingenic,jz4770-codec
- const: ingenic,jz4725b-codec
- const: ingenic,jz4740-codec
reg:
maxItems: 1
clocks:
maxItems: 1
clock-names:
items:
- const: aic
'#sound-dai-cells':
const: 0
additionalProperties: false
required:
- compatible
- reg
- clocks
- clock-names
- '#sound-dai-cells'
examples:
- |
#include <dt-bindings/clock/jz4740-cgu.h>
codec: audio-codec@10020080 {
compatible = "ingenic,jz4740-codec";
reg = <0x10020080 0x8>;
#sound-dai-cells = <0>;
clocks = <&cgu JZ4740_CLK_AIC>;
clock-names = "aic";
};
...

View file

@ -1,20 +0,0 @@
Ingenic JZ4725B codec controller
Required properties:
- compatible : "ingenic,jz4725b-codec"
- reg : codec registers location and length
- clocks : phandle to the AIC clock.
- clock-names: must be set to "aic".
- #sound-dai-cells: Must be set to 0.
Example:
codec: audio-codec@100200a4 {
compatible = "ingenic,jz4725b-codec";
reg = <0x100200a4 0x8>;
#sound-dai-cells = <0>;
clocks = <&cgu JZ4725B_CLK_AIC>;
clock-names = "aic";
};

View file

@ -1,20 +0,0 @@
Ingenic JZ4740 codec controller
Required properties:
- compatible : "ingenic,jz4740-codec"
- reg : codec registers location and length
- clocks : phandle to the AIC clock.
- clock-names: must be set to "aic".
- #sound-dai-cells: Must be set to 0.
Example:
codec: audio-codec@10020080 {
compatible = "ingenic,jz4740-codec";
reg = <0x10020080 0x8>;
#sound-dai-cells = <0>;
clocks = <&cgu JZ4740_CLK_AIC>;
clock-names = "aic";
};

View file

@ -5,7 +5,10 @@ This binding describes the SDM845 sound card, which uses qdsp for audio.
- compatible:
Usage: required
Value type: <stringlist>
Definition: must be "qcom,sdm845-sndcard"
Definition: must be one of this
"qcom,sdm845-sndcard"
"qcom,db845c-sndcard"
"lenovo,yoga-c630-sndcard"
- audio-routing:
Usage: Optional

View file

@ -0,0 +1,175 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/sound/qcom,wcd934x.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Bindings for Qualcomm WCD9340/WCD9341 Audio Codec
maintainers:
- Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
description: |
Qualcomm WCD9340/WCD9341 Codec is a standalone Hi-Fi audio codec IC.
It has in-built Soundwire controller, pin controller, interrupt mux and
supports both I2S/I2C and SLIMbus audio interfaces.
properties:
compatible:
const: slim217,250
reg:
maxItems: 1
interrupts:
maxItems: 1
reset-gpios:
description: GPIO spec for reset line to use
maxItems: 1
slim-ifc-dev: true
clocks:
maxItems: 1
clock-names:
const: extclk
vdd-buck-supply:
description: A reference to the 1.8V buck supply
vdd-buck-sido-supply:
description: A reference to the 1.8V SIDO buck supply
vdd-rx-supply:
description: A reference to the 1.8V rx supply
vdd-tx-supply:
description: A reference to the 1.8V tx supply
vdd-vbat-supply:
description: A reference to the vbat supply
vdd-io-supply:
description: A reference to the 1.8V I/O supply
vdd-micbias-supply:
description: A reference to the micbias supply
qcom,micbias1-microvolt:
description: micbias1 voltage
minimum: 1800000
maximum: 2850000
qcom,micbias2-microvolt:
description: micbias2 voltage
minimum: 1800000
maximum: 2850000
qcom,micbias3-microvolt:
description: micbias3 voltage
minimum: 1800000
maximum: 2850000
qcom,micbias4-microvolt:
description: micbias4 voltage
minimum: 1800000
maximum: 2850000
clock-output-names:
const: mclk
clock-frequency:
description: Clock frequency of output clk in Hz
interrupt-controller: true
'#interrupt-cells':
const: 1
'#clock-cells':
const: 0
'#sound-dai-cells':
const: 1
"#address-cells":
const: 1
"#size-cells":
const: 1
gpio@42:
type: object
allOf:
- $ref: ../gpio/qcom,wcd934x-gpio.yaml#
patternProperties:
"^.*@[0-9a-f]+$":
type: object
description: |
WCD934x subnode for each slave devices. Bindings of each subnodes
depends on the specific driver providing the functionality and
documented in their respective bindings.
properties:
reg:
maxItems: 1
required:
- reg
required:
- compatible
- reg
- reset-gpios
- slim-ifc-dev
- interrupts
- interrupt-controller
- clock-frequency
- clock-output-names
- qcom,micbias1-microvolt
- qcom,micbias2-microvolt
- qcom,micbias3-microvolt
- qcom,micbias4-microvolt
- "#interrupt-cells"
- "#clock-cells"
- "#sound-dai-cells"
- "#address-cells"
- "#size-cells"
examples:
- |
codec@1,0{
compatible = "slim217,250";
reg = <1 0>;
reset-gpios = <&tlmm 64 0>;
slim-ifc-dev = <&wcd9340_ifd>;
#sound-dai-cells = <1>;
interrupt-parent = <&tlmm>;
interrupts = <54 4>;
interrupt-controller;
#interrupt-cells = <1>;
#clock-cells = <0>;
clock-frequency = <9600000>;
clock-output-names = "mclk";
qcom,micbias1-microvolt = <1800000>;
qcom,micbias2-microvolt = <1800000>;
qcom,micbias3-microvolt = <1800000>;
qcom,micbias4-microvolt = <1800000>;
clock-names = "extclk";
clocks = <&rpmhcc 2>;
#address-cells = <1>;
#size-cells = <1>;
gpio@42 {
compatible = "qcom,wcd9340-gpio";
reg = <0x42 0x2>;
gpio-controller;
#gpio-cells = <2>;
};
};
...

View file

@ -0,0 +1,68 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/sound/qcom,wsa881x.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Bindings for Qualcomm WSA8810/WSA8815 Class-D Smart Speaker Amplifier
maintainers:
- Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
description: |
WSA8810 is a class-D smart speaker amplifier and WSA8815
is a high-output power class-D smart speaker amplifier.
Their primary operating mode uses a SoundWire digital audio
interface. This binding is for SoundWire interface.
properties:
compatible:
const: sdw10217201000
reg:
maxItems: 1
powerdown-gpios:
description: GPIO spec for Powerdown/Shutdown line to use
maxItems: 1
'#thermal-sensor-cells':
const: 0
'#sound-dai-cells':
const: 0
required:
- compatible
- reg
- powerdown-gpios
- "#thermal-sensor-cells"
- "#sound-dai-cells"
additionalProperties: false
examples:
- |
soundwire@c2d0000 {
#address-cells = <2>;
#size-cells = <0>;
reg = <0x0c2d0000 0x2000>;
speaker@0,1 {
compatible = "sdw10217201000";
reg = <0 1>;
powerdown-gpios = <&wcdpinctrl 2 0>;
#thermal-sensor-cells = <0>;
#sound-dai-cells = <0>;
};
speaker@0,2 {
compatible = "sdw10217201000";
reg = <0 2>;
powerdown-gpios = <&wcdpinctrl 2 0>;
#thermal-sensor-cells = <0>;
#sound-dai-cells = <0>;
};
};
...

View file

@ -0,0 +1,17 @@
RT1015 Mono Class D Audio Amplifier
This device supports I2C only.
Required properties:
- compatible : "realtek,rt1015".
- reg : The I2C address of the device.
Example:
rt1015: codec@28 {
compatible = "realtek,rt1015";
reg = <0x28>;
};

View file

@ -10,6 +10,10 @@ Required properties:
- interrupts : The CODEC's interrupt output.
- avdd-supply: Power supply for AVDD, providing 1.8V.
- cpvdd-supply: Power supply for CPVDD, providing 3.5V.
Optional properties:
- hp-detect-gpios:

View file

@ -0,0 +1,160 @@
# SPDX-License-Identifier: GPL-2.0
%YAML 1.2
---
$id: http://devicetree.org/schemas/thermal/allwinner,sun8i-a83t-ths.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Allwinner SUN8I Thermal Controller Device Tree Bindings
maintainers:
- Vasily Khoruzhick <anarsoul@gmail.com>
- Yangtao Li <tiny.windzz@gmail.com>
properties:
compatible:
enum:
- allwinner,sun8i-a83t-ths
- allwinner,sun8i-h3-ths
- allwinner,sun8i-r40-ths
- allwinner,sun50i-a64-ths
- allwinner,sun50i-h5-ths
- allwinner,sun50i-h6-ths
clocks:
minItems: 1
maxItems: 2
items:
- description: Bus Clock
- description: Module Clock
clock-names:
minItems: 1
maxItems: 2
items:
- const: bus
- const: mod
reg:
maxItems: 1
interrupts:
maxItems: 1
resets:
maxItems: 1
nvmem-cells:
maxItems: 1
description: Calibration data for thermal sensors
nvmem-cell-names:
const: calibration
# See ./thermal.txt for details
"#thermal-sensor-cells":
enum:
- 0
- 1
allOf:
- if:
properties:
compatible:
contains:
const: allwinner,sun50i-h6-ths
then:
properties:
clocks:
maxItems: 1
clock-names:
maxItems: 1
else:
properties:
clocks:
minItems: 2
clock-names:
minItems: 2
- if:
properties:
compatible:
contains:
const: allwinner,sun8i-h3-ths
then:
properties:
"#thermal-sensor-cells":
const: 0
else:
properties:
"#thermal-sensor-cells":
const: 1
- if:
properties:
compatible:
contains:
enum:
- const: allwinner,sun8i-h3-ths
- const: allwinner,sun8i-r40-ths
- const: allwinner,sun50i-a64-ths
- const: allwinner,sun50i-h5-ths
- const: allwinner,sun50i-h6-ths
then:
required:
- clocks
- clock-names
- resets
required:
- compatible
- reg
- interrupts
- '#thermal-sensor-cells'
additionalProperties: false
examples:
- |
thermal-sensor@1f04000 {
compatible = "allwinner,sun8i-a83t-ths";
reg = <0x01f04000 0x100>;
interrupts = <0 31 0>;
nvmem-cells = <&ths_calibration>;
nvmem-cell-names = "calibration";
#thermal-sensor-cells = <1>;
};
- |
thermal-sensor@1c25000 {
compatible = "allwinner,sun8i-h3-ths";
reg = <0x01c25000 0x400>;
clocks = <&ccu 0>, <&ccu 1>;
clock-names = "bus", "mod";
resets = <&ccu 2>;
interrupts = <0 31 0>;
nvmem-cells = <&ths_calibration>;
nvmem-cell-names = "calibration";
#thermal-sensor-cells = <0>;
};
- |
thermal-sensor@5070400 {
compatible = "allwinner,sun50i-h6-ths";
reg = <0x05070400 0x100>;
clocks = <&ccu 0>;
clock-names = "bus";
resets = <&ccu 2>;
interrupts = <0 15 0>;
nvmem-cells = <&ths_calibration>;
nvmem-cell-names = "calibration";
#thermal-sensor-cells = <1>;
};
...

View file

@ -0,0 +1,48 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/thermal/brcm,avs-ro-thermal.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Broadcom AVS ring oscillator thermal
maintainers:
- Stefan Wahren <wahrenst@gmx.net>
description: |+
The thermal node should be the child of a syscon node with the
required property:
- compatible: Should be one of the following:
"brcm,bcm2711-avs-monitor", "syscon", "simple-mfd"
Refer to the the bindings described in
Documentation/devicetree/bindings/mfd/syscon.txt
properties:
compatible:
const: brcm,bcm2711-thermal
# See ./thermal.txt for details
"#thermal-sensor-cells":
const: 0
required:
- compatible
- '#thermal-sensor-cells'
additionalProperties: false
examples:
- |
avs-monitor@7d5d2000 {
compatible = "brcm,bcm2711-avs-monitor",
"syscon", "simple-mfd";
reg = <0x7d5d2000 0xf00>;
thermal: thermal {
compatible = "brcm,bcm2711-thermal";
#thermal-sensor-cells = <0>;
};
};
...

View file

@ -3,9 +3,13 @@
Thermal management core, provided by the AVS TMON hardware block.
Required properties:
- compatible: must be "brcm,avs-tmon" and/or "brcm,avs-tmon-bcm7445"
- compatible: must be one of:
"brcm,avs-tmon-bcm7216"
"brcm,avs-tmon-bcm7445"
"brcm,avs-tmon"
- reg: address range for the AVS TMON registers
- interrupts: temperature monitor interrupt, for high/low threshold triggers
- interrupts: temperature monitor interrupt, for high/low threshold triggers,
required except for "brcm,avs-tmon-bcm7216"
- interrupt-names: should be "tmon"
Example:

View file

@ -0,0 +1,189 @@
Situation:
----------
Under certain circumstances a SoC can reach a critical temperature
limit and is unable to stabilize the temperature around a temperature
control. When the SoC has to stabilize the temperature, the kernel can
act on a cooling device to mitigate the dissipated power. When the
critical temperature is reached, a decision must be taken to reduce
the temperature, that, in turn impacts performance.
Another situation is when the silicon temperature continues to
increase even after the dynamic leakage is reduced to its minimum by
clock gating the component. This runaway phenomenon can continue due
to the static leakage. The only solution is to power down the
component, thus dropping the dynamic and static leakage that will
allow the component to cool down.
Last but not least, the system can ask for a specific power budget but
because of the OPP density, we can only choose an OPP with a power
budget lower than the requested one and under-utilize the CPU, thus
losing performance. In other words, one OPP under-utilizes the CPU
with a power less than the requested power budget and the next OPP
exceeds the power budget. An intermediate OPP could have been used if
it were present.
Solutions:
----------
If we can remove the static and the dynamic leakage for a specific
duration in a controlled period, the SoC temperature will
decrease. Acting on the idle state duration or the idle cycle
injection period, we can mitigate the temperature by modulating the
power budget.
The Operating Performance Point (OPP) density has a great influence on
the control precision of cpufreq, however different vendors have a
plethora of OPP density, and some have large power gap between OPPs,
that will result in loss of performance during thermal control and
loss of power in other scenarios.
At a specific OPP, we can assume that injecting idle cycle on all CPUs
belong to the same cluster, with a duration greater than the cluster
idle state target residency, we lead to dropping the static and the
dynamic leakage for this period (modulo the energy needed to enter
this state). So the sustainable power with idle cycles has a linear
relation with the OPPs sustainable power and can be computed with a
coefficient similar to:
Power(IdleCycle) = Coef x Power(OPP)
Idle Injection:
---------------
The base concept of the idle injection is to force the CPU to go to an
idle state for a specified time each control cycle, it provides
another way to control CPU power and heat in addition to
cpufreq. Ideally, if all CPUs belonging to the same cluster, inject
their idle cycles synchronously, the cluster can reach its power down
state with a minimum power consumption and reduce the static leakage
to almost zero. However, these idle cycles injection will add extra
latencies as the CPUs will have to wakeup from a deep sleep state.
We use a fixed duration of idle injection that gives an acceptable
performance penalty and a fixed latency. Mitigation can be increased
or decreased by modulating the duty cycle of the idle injection.
^
|
|
|------- -------
|_______|_______________________|_______|___________
<------>
idle <---------------------->
running
<----------------------------->
duty cycle 25%
The implementation of the cooling device bases the number of states on
the duty cycle percentage. When no mitigation is happening the cooling
device state is zero, meaning the duty cycle is 0%.
When the mitigation begins, depending on the governor's policy, a
starting state is selected. With a fixed idle duration and the duty
cycle (aka the cooling device state), the running duration can be
computed.
The governor will change the cooling device state thus the duty cycle
and this variation will modulate the cooling effect.
^
|
|
|------- -------
|_______|_______________|_______|___________
<------>
idle <-------------->
running
<----------------------------->
duty cycle 33%
^
|
|
|------- -------
|_______|_______|_______|___________
<------>
idle <------>
running
<------------->
duty cycle 50%
The idle injection duration value must comply with the constraints:
- It is less than or equal to the latency we tolerate when the
mitigation begins. It is platform dependent and will depend on the
user experience, reactivity vs performance trade off we want. This
value should be specified.
- It is greater than the idle states target residency we want to go
for thermal mitigation, otherwise we end up consuming more energy.
Power considerations
--------------------
When we reach the thermal trip point, we have to sustain a specified
power for a specific temperature but at this time we consume:
Power = Capacitance x Voltage^2 x Frequency x Utilisation
... which is more than the sustainable power (or there is something
wrong in the system setup). The Capacitance and Utilisation are a
fixed value, Voltage and the Frequency are fixed artificially
because we dont want to change the OPP. We can group the
Capacitance and the Utilisation into a single term which is the
Dynamic Power Coefficient (Cdyn) Simplifying the above, we have:
Pdyn = Cdyn x Voltage^2 x Frequency
The power allocator governor will ask us somehow to reduce our power
in order to target the sustainable power defined in the device
tree. So with the idle injection mechanism, we want an average power
(Ptarget) resulting in an amount of time running at full power on a
specific OPP and idle another amount of time. That could be put in a
equation:
P(opp)target = ((Trunning x (P(opp)running) + (Tidle x P(opp)idle)) /
(Trunning + Tidle)
...
Tidle = Trunning x ((P(opp)running / P(opp)target) - 1)
At this point if we know the running period for the CPU, that gives us
the idle injection we need. Alternatively if we have the idle
injection duration, we can compute the running duration with:
Trunning = Tidle / ((P(opp)running / P(opp)target) - 1)
Practically, if the running power is less than the targeted power, we
end up with a negative time value, so obviously the equation usage is
bound to a power reduction, hence a higher OPP is needed to have the
running power greater than the targeted power.
However, in this demonstration we ignore three aspects:
* The static leakage is not defined here, we can introduce it in the
equation but assuming it will be zero most of the time as it is
difficult to get the values from the SoC vendors
* The idle state wake up latency (or entry + exit latency) is not
taken into account, it must be added in the equation in order to
rigorously compute the idle injection
* The injected idle duration must be greater than the idle state
target residency, otherwise we end up consuming more energy and
potentially invert the mitigation effect
So the final equation is:
Trunning = (Tidle - Twakeup ) x
(((P(opp)dyn + P(opp)static ) - P(opp)target) / P(opp)target )

View file

@ -4,7 +4,7 @@ Kernel driver exynos_tmu
Supported chips:
* ARM SAMSUNG EXYNOS4, EXYNOS5 series of SoC
* ARM Samsung Exynos4, Exynos5 series of SoC
Datasheet: Not publicly available
@ -14,7 +14,7 @@ Authors: Amit Daniel <amit.daniel@samsung.com>
TMU controller Description:
---------------------------
This driver allows to read temperature inside SAMSUNG EXYNOS4/5 series of SoC.
This driver allows to read temperature inside Samsung Exynos4/5 series of SoC.
The chip only exposes the measured 8-bit temperature code value
through a register.
@ -43,7 +43,7 @@ The three equations are:
Trimming info for 85 degree Celsius (stored at TRIMINFO register)
Temperature code measured at 85 degree Celsius which is unchanged
TMU(Thermal Management Unit) in EXYNOS4/5 generates interrupt
TMU(Thermal Management Unit) in Exynos4/5 generates interrupt
when temperature exceeds pre-defined levels.
The maximum number of configurable threshold is five.
The threshold levels are defined as follows::
@ -67,7 +67,7 @@ TMU driver description:
The exynos thermal driver is structured as::
Kernel Core thermal framework
(thermal_core.c, step_wise.c, cpu_cooling.c)
(thermal_core.c, step_wise.c, cpufreq_cooling.c)
^
|
|

View file

@ -495,7 +495,8 @@ Module for C-Media CMI8338/8738/8768/8770 PCI sound cards.
mpu_port
port address of MIDI interface (8338 only):
0x300,0x310,0x320,0x330 = legacy port,
0 = disable (default)
1 = integrated PCI port (default on 8738),
0 = disable
fm_port
port address of OPL-3 FM synthesizer (8x38 only):
0x388 = legacy port,

View file

@ -259,7 +259,7 @@ to details explained in the following section.
{
struct mychip *chip;
int err;
static struct snd_device_ops ops = {
static const struct snd_device_ops ops = {
.dev_free = snd_mychip_dev_free,
};
@ -675,7 +675,7 @@ low-level device with a specified ``ops``,
::
static struct snd_device_ops ops = {
static const struct snd_device_ops ops = {
.dev_free = snd_mychip_dev_free,
};
....
@ -761,7 +761,7 @@ destructor and PCI entries. Example code is shown first, below.
{
struct mychip *chip;
int err;
static struct snd_device_ops ops = {
static const struct snd_device_ops ops = {
.dev_free = snd_mychip_dev_free,
};
@ -3912,7 +3912,7 @@ For a raw-data proc-file, set the attributes as follows:
::
static struct snd_info_entry_ops my_file_io_ops = {
static const struct snd_info_entry_ops my_file_io_ops = {
.read = my_file_io_read,
};

View file

@ -694,6 +694,14 @@ L: linux-crypto@vger.kernel.org
S: Maintained
F: drivers/crypto/allwinner/
ALLWINNER THERMAL DRIVER
M: Vasily Khoruzhick <anarsoul@gmail.com>
M: Yangtao Li <tiny.windzz@gmail.com>
L: linux-pm@vger.kernel.org
S: Maintained
F: Documentation/devicetree/bindings/thermal/allwinner,sun8i-a83t-ths.yaml
F: drivers/thermal/sun8i_thermal.c
ALLWINNER VPU DRIVER
M: Maxime Ripard <mripard@kernel.org>
M: Paul Kocialkowski <paul.kocialkowski@bootlin.com>
@ -16432,12 +16440,15 @@ F: Documentation/devicetree/bindings/thermal/
THERMAL/CPU_COOLING
M: Amit Daniel Kachhap <amit.kachhap@gmail.com>
M: Daniel Lezcano <daniel.lezcano@linaro.org>
M: Viresh Kumar <viresh.kumar@linaro.org>
M: Javi Merino <javi.merino@kernel.org>
L: linux-pm@vger.kernel.org
S: Supported
F: Documentation/driver-api/thermal/cpu-cooling-api.rst
F: drivers/thermal/cpu_cooling.c
F: Documentation/driver-api/thermal/cpu-idle-cooling.rst
F: drivers/thermal/cpufreq_cooling.c
F: drivers/thermal/cpuidle_cooling.c
F: include/linux/cpu_cooling.h
THERMAL DRIVER FOR AMLOGIC SOCS

View file

@ -66,6 +66,17 @@
IRQ_TYPE_LEVEL_HIGH)>;
};
avs_monitor: avs-monitor@7d5d2000 {
compatible = "brcm,bcm2711-avs-monitor",
"syscon", "simple-mfd";
reg = <0x7d5d2000 0xf00>;
thermal: thermal {
compatible = "brcm,bcm2711-thermal";
#thermal-sensor-cells = <0>;
};
};
dma: dma@7e007000 {
compatible = "brcm,bcm2835-dma";
reg = <0x7e007000 0xb00>;
@ -363,6 +374,7 @@
&cpu_thermal {
coefficients = <(-487) 410040>;
thermal-sensors = <&thermal>;
};
&dsi0 {

View file

@ -496,6 +496,7 @@ CONFIG_IMX_THERMAL=y
CONFIG_ROCKCHIP_THERMAL=y
CONFIG_RCAR_THERMAL=y
CONFIG_ARMADA_THERMAL=y
CONFIG_BCM2711_THERMAL=m
CONFIG_BCM2835_THERMAL=m
CONFIG_BRCMSTB_THERMAL=m
CONFIG_ST_THERMAL_MEMMAP=y

View file

@ -445,6 +445,7 @@ CONFIG_ROCKCHIP_THERMAL=m
CONFIG_RCAR_THERMAL=y
CONFIG_RCAR_GEN3_THERMAL=y
CONFIG_ARMADA_THERMAL=y
CONFIG_BCM2711_THERMAL=m
CONFIG_BCM2835_THERMAL=m
CONFIG_BRCMSTB_THERMAL=m
CONFIG_EXYNOS_THERMAL=y

View file

@ -69,7 +69,7 @@ cflags-y += -Wa,-I$(srctree)/arch/$(ARCH)/include
#
cflags-$(CONFIG_FRAME_POINTER) += -fno-optimize-sibling-calls
ifeq ($(call cc-option-yn,-mpacked-stack),y)
ifeq ($(call cc-option-yn,-mpacked-stack -mbackchain -msoft-float),y)
cflags-$(CONFIG_PACK_STACK) += -mpacked-stack -D__PACK_STACK
aflags-$(CONFIG_PACK_STACK) += -D__PACK_STACK
endif

View file

@ -329,7 +329,7 @@ ENTRY(startup_kdump)
.quad .Lduct # cr5: primary-aste origin
.quad 0 # cr6: I/O interrupts
.quad 0 # cr7: secondary space segment table
.quad 0 # cr8: access registers translation
.quad 0x0000000000008000 # cr8: access registers translation
.quad 0 # cr9: tracing off
.quad 0 # cr10: tracing off
.quad 0 # cr11: tracing off

View file

@ -10,15 +10,14 @@
#define __EMIT_BUG(x) do { \
asm_inline volatile( \
"0: j 0b+2\n" \
"1:\n" \
"0: mc 0,0\n" \
".section .rodata.str,\"aMS\",@progbits,1\n" \
"2: .asciz \""__FILE__"\"\n" \
"1: .asciz \""__FILE__"\"\n" \
".previous\n" \
".section __bug_table,\"awM\",@progbits,%2\n" \
"3: .long 1b-3b,2b-3b\n" \
"2: .long 0b-2b,1b-2b\n" \
" .short %0,%1\n" \
" .org 3b+%2\n" \
" .org 2b+%2\n" \
".previous\n" \
: : "i" (__LINE__), \
"i" (x), \
@ -29,12 +28,11 @@
#define __EMIT_BUG(x) do { \
asm_inline volatile( \
"0: j 0b+2\n" \
"1:\n" \
"0: mc 0,0\n" \
".section __bug_table,\"awM\",@progbits,%1\n" \
"2: .long 1b-2b\n" \
"1: .long 0b-1b\n" \
" .short %0\n" \
" .org 2b+%1\n" \
" .org 1b+%1\n" \
".previous\n" \
: : "i" (x), \
"i" (sizeof(struct bug_entry))); \

View file

@ -10,7 +10,9 @@
#define JUMP_LABEL_NOP_SIZE 6
#define JUMP_LABEL_NOP_OFFSET 2
#if __GNUC__ < 9
#ifdef CONFIG_CC_IS_CLANG
#define JUMP_LABEL_STATIC_KEY_CONSTRAINT "i"
#elif __GNUC__ < 9
#define JUMP_LABEL_STATIC_KEY_CONSTRAINT "X"
#else
#define JUMP_LABEL_STATIC_KEY_CONSTRAINT "jdd"

View file

@ -180,7 +180,7 @@ void zpci_remove_reserved_devices(void);
/* CLP */
int clp_scan_pci_devices(void);
int clp_rescan_pci_devices(void);
int clp_rescan_pci_devices_simple(void);
int clp_rescan_pci_devices_simple(u32 *fid);
int clp_add_pci_device(u32, u32, int);
int clp_enable_fh(struct zpci_dev *, u8);
int clp_disable_fh(struct zpci_dev *);

View file

@ -45,6 +45,7 @@ void specification_exception(struct pt_regs *regs);
void transaction_exception(struct pt_regs *regs);
void translation_exception(struct pt_regs *regs);
void vector_exception(struct pt_regs *regs);
void monitor_event_exception(struct pt_regs *regs);
void do_per_trap(struct pt_regs *regs);
void do_report_trap(struct pt_regs *regs, int si_signo, int si_code, char *str);

View file

@ -26,6 +26,12 @@ ENDPROC(ftrace_stub)
#define STACK_PTREGS (STACK_FRAME_OVERHEAD)
#define STACK_PTREGS_GPRS (STACK_PTREGS + __PT_GPRS)
#define STACK_PTREGS_PSW (STACK_PTREGS + __PT_PSW)
#ifdef __PACK_STACK
/* allocate just enough for r14, r15 and backchain */
#define TRACED_FUNC_FRAME_SIZE 24
#else
#define TRACED_FUNC_FRAME_SIZE STACK_FRAME_OVERHEAD
#endif
ENTRY(_mcount)
BR_EX %r14
@ -40,9 +46,16 @@ ENTRY(ftrace_caller)
#if !(defined(CC_USING_HOTPATCH) || defined(CC_USING_NOP_MCOUNT))
aghi %r0,MCOUNT_RETURN_FIXUP
#endif
aghi %r15,-STACK_FRAME_SIZE
# allocate stack frame for ftrace_caller to contain traced function
aghi %r15,-TRACED_FUNC_FRAME_SIZE
stg %r1,__SF_BACKCHAIN(%r15)
stg %r0,(__SF_GPRS+8*8)(%r15)
stg %r15,(__SF_GPRS+9*8)(%r15)
# allocate pt_regs and stack frame for ftrace_trace_function
aghi %r15,-STACK_FRAME_SIZE
stg %r1,(STACK_PTREGS_GPRS+15*8)(%r15)
aghi %r1,-TRACED_FUNC_FRAME_SIZE
stg %r1,__SF_BACKCHAIN(%r15)
stg %r0,(STACK_PTREGS_PSW+8)(%r15)
stmg %r2,%r14,(STACK_PTREGS_GPRS+2*8)(%r15)
#ifdef CONFIG_HAVE_MARCH_Z196_FEATURES

View file

@ -1383,7 +1383,8 @@ static void aux_output_end(struct perf_output_handle *handle)
te = aux_sdb_trailer(aux, aux->alert_mark);
te->flags &= ~SDB_TE_ALERT_REQ_MASK;
debug_sprintf_event(sfdbg, 6, "%s: collect %#lx SDBs\n", __func__, i);
debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
__func__, i, range_scan, aux->head);
}
/*
@ -1416,13 +1417,17 @@ static int aux_output_begin(struct perf_output_handle *handle,
* SDBs between aux->head and aux->empty_mark are already ready
* for new data. range_scan is num of SDBs not within them.
*/
debug_sprintf_event(sfdbg, 6,
"%s: range %ld head %ld alert %ld empty %ld\n",
__func__, range, aux->head, aux->alert_mark,
aux->empty_mark);
if (range > AUX_SDB_NUM_EMPTY(aux)) {
range_scan = range - AUX_SDB_NUM_EMPTY(aux);
idx = aux->empty_mark + 1;
for (i = 0; i < range_scan; i++, idx++) {
te = aux_sdb_trailer(aux, idx);
te->flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
te->flags = te->flags & ~SDB_TE_ALERT_REQ_MASK;
te->flags &= ~(SDB_TE_BUFFER_FULL_MASK |
SDB_TE_ALERT_REQ_MASK);
te->overflow = 0;
}
/* Save the position of empty SDBs */
@ -1441,15 +1446,11 @@ static int aux_output_begin(struct perf_output_handle *handle,
cpuhw->lsctl.tear = base + offset * sizeof(unsigned long);
cpuhw->lsctl.dear = aux->sdb_index[head];
debug_sprintf_event(sfdbg, 6, "%s: "
"head->alert_mark->empty_mark (num_alert, range)"
"[%#lx -> %#lx -> %#lx] (%#lx, %#lx) "
"tear index %#lx, tear %#lx dear %#lx\n", __func__,
debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
"index %ld tear %#lx dear %#lx\n", __func__,
aux->head, aux->alert_mark, aux->empty_mark,
AUX_SDB_NUM_ALERT(aux), range,
head / CPUM_SF_SDB_PER_TABLE,
cpuhw->lsctl.tear,
cpuhw->lsctl.dear);
cpuhw->lsctl.tear, cpuhw->lsctl.dear);
return 0;
}
@ -1469,8 +1470,7 @@ static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
te = aux_sdb_trailer(aux, alert_index);
do {
orig_flags = te->flags;
orig_overflow = te->overflow;
*overflow = orig_overflow;
*overflow = orig_overflow = te->overflow;
if (orig_flags & SDB_TE_BUFFER_FULL_MASK) {
/*
* SDB is already set by hardware.
@ -1512,9 +1512,12 @@ static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
unsigned long long *overflow)
{
unsigned long long orig_overflow, orig_flags, new_flags;
unsigned long i, range_scan, idx;
unsigned long i, range_scan, idx, idx_old;
struct hws_trailer_entry *te;
debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
"empty %ld\n", __func__, range, aux->head,
aux->alert_mark, aux->empty_mark);
if (range <= AUX_SDB_NUM_EMPTY(aux))
/*
* No need to scan. All SDBs in range are marked as empty.
@ -1537,7 +1540,7 @@ static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
* indicator fall into this range, set it.
*/
range_scan = range - AUX_SDB_NUM_EMPTY(aux);
idx = aux->empty_mark + 1;
idx_old = idx = aux->empty_mark + 1;
for (i = 0; i < range_scan; i++, idx++) {
te = aux_sdb_trailer(aux, idx);
do {
@ -1557,6 +1560,9 @@ static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
/* Update empty_mark to new position */
aux->empty_mark = aux->head + range - 1;
debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
"empty %ld\n", __func__, range_scan, idx_old,
idx - 1, aux->empty_mark);
return true;
}
@ -1570,7 +1576,6 @@ static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
unsigned long range = 0, size;
unsigned long long overflow = 0;
struct perf_output_handle *handle = &cpuhw->handle;
unsigned long num_sdb;
aux = perf_get_aux(handle);
if (WARN_ON_ONCE(!aux))
@ -1578,8 +1583,9 @@ static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
/* Inform user space new data arrived */
size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
size >> PAGE_SHIFT);
perf_aux_output_end(handle, size);
num_sdb = aux->sfb.num_sdb;
while (!done) {
/* Get an output handle */
@ -1587,7 +1593,7 @@ static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
if (handle->size == 0) {
pr_err("The AUX buffer with %lu pages for the "
"diagnostic-sampling mode is full\n",
num_sdb);
aux->sfb.num_sdb);
debug_sprintf_event(sfdbg, 1,
"%s: AUX buffer used up\n",
__func__);
@ -1612,14 +1618,14 @@ static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
size = range << PAGE_SHIFT;
perf_aux_output_end(&cpuhw->handle, size);
pr_err("Sample data caused the AUX buffer with %lu "
"pages to overflow\n", num_sdb);
debug_sprintf_event(sfdbg, 1, "%s: head %#lx range %#lx "
"overflow %#llx\n", __func__,
"pages to overflow\n", aux->sfb.num_sdb);
debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
"overflow %lld\n", __func__,
aux->head, range, overflow);
} else {
size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
perf_aux_output_end(&cpuhw->handle, size);
debug_sprintf_event(sfdbg, 6, "%s: head %#lx alert %#lx "
debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
"already full, try another\n",
__func__,
aux->head, aux->alert_mark);
@ -1627,11 +1633,9 @@ static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
}
if (done)
debug_sprintf_event(sfdbg, 6, "%s: aux_reset_buffer "
"[%#lx -> %#lx -> %#lx] (%#lx, %#lx)\n",
__func__, aux->head, aux->alert_mark,
aux->empty_mark, AUX_SDB_NUM_ALERT(aux),
range);
debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
"empty %ld\n", __func__, aux->head,
aux->alert_mark, aux->empty_mark);
}
/*
@ -1654,8 +1658,7 @@ static void aux_buffer_free(void *data)
kfree(aux->sdb_index);
kfree(aux);
debug_sprintf_event(sfdbg, 4, "%s: free "
"%lu SDBTs\n", __func__, num_sdbt);
debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
}
static void aux_sdb_init(unsigned long sdb)
@ -1707,13 +1710,13 @@ static void *aux_buffer_setup(struct perf_event *event, void **pages,
}
/* Allocate aux_buffer struct for the event */
aux = kmalloc(sizeof(struct aux_buffer), GFP_KERNEL);
aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
if (!aux)
goto no_aux;
sfb = &aux->sfb;
/* Allocate sdbt_index for fast reference */
n_sdbt = (nr_pages + CPUM_SF_SDB_PER_TABLE - 1) / CPUM_SF_SDB_PER_TABLE;
n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
if (!aux->sdbt_index)
goto no_sdbt_index;
@ -1763,8 +1766,8 @@ static void *aux_buffer_setup(struct perf_event *event, void **pages,
*/
aux->empty_mark = sfb->num_sdb - 1;
debug_sprintf_event(sfdbg, 4, "%s: setup %lu SDBTs and %lu SDBs\n",
__func__, sfb->num_sdbt, sfb->num_sdb);
debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
sfb->num_sdbt, sfb->num_sdb);
return aux;

View file

@ -81,7 +81,7 @@ PGM_CHECK_DEFAULT /* 3c */
PGM_CHECK_DEFAULT /* 3d */
PGM_CHECK_DEFAULT /* 3e */
PGM_CHECK_DEFAULT /* 3f */
PGM_CHECK_DEFAULT /* 40 */
PGM_CHECK(monitor_event_exception) /* 40 */
PGM_CHECK_DEFAULT /* 41 */
PGM_CHECK_DEFAULT /* 42 */
PGM_CHECK_DEFAULT /* 43 */

View file

@ -53,11 +53,6 @@ void do_report_trap(struct pt_regs *regs, int si_signo, int si_code, char *str)
if (fixup)
regs->psw.addr = extable_fixup(fixup);
else {
enum bug_trap_type btt;
btt = report_bug(regs->psw.addr, regs);
if (btt == BUG_TRAP_TYPE_WARN)
return;
die(regs, str);
}
}
@ -245,6 +240,27 @@ void space_switch_exception(struct pt_regs *regs)
do_trap(regs, SIGILL, ILL_PRVOPC, "space switch event");
}
void monitor_event_exception(struct pt_regs *regs)
{
const struct exception_table_entry *fixup;
if (user_mode(regs))
return;
switch (report_bug(regs->psw.addr - (regs->int_code >> 16), regs)) {
case BUG_TRAP_TYPE_NONE:
fixup = s390_search_extables(regs->psw.addr);
if (fixup)
regs->psw.addr = extable_fixup(fixup);
break;
case BUG_TRAP_TYPE_WARN:
break;
case BUG_TRAP_TYPE_BUG:
die(regs, "monitor event");
break;
}
}
void kernel_stack_overflow(struct pt_regs *regs)
{
bust_spinlocks(1);
@ -255,8 +271,23 @@ void kernel_stack_overflow(struct pt_regs *regs)
}
NOKPROBE_SYMBOL(kernel_stack_overflow);
static void test_monitor_call(void)
{
int val = 1;
asm volatile(
" mc 0,0\n"
"0: xgr %0,%0\n"
"1:\n"
EX_TABLE(0b,1b)
: "+d" (val));
if (!val)
panic("Monitor call doesn't work!\n");
}
void __init trap_init(void)
{
sort_extable(__start_dma_ex_table, __stop_dma_ex_table);
local_mcck_enable();
test_monitor_call();
}

View file

@ -939,5 +939,5 @@ subsys_initcall_sync(pci_base_init);
void zpci_rescan(void)
{
if (zpci_is_enabled())
clp_rescan_pci_devices_simple();
clp_rescan_pci_devices_simple(NULL);
}

View file

@ -240,12 +240,14 @@ error:
}
/*
* Enable/Disable a given PCI function defined by its function handle.
* Enable/Disable a given PCI function and update its function handle if
* necessary
*/
static int clp_set_pci_fn(u32 *fh, u8 nr_dma_as, u8 command)
static int clp_set_pci_fn(struct zpci_dev *zdev, u8 nr_dma_as, u8 command)
{
struct clp_req_rsp_set_pci *rrb;
int rc, retries = 100;
u32 fid = zdev->fid;
rrb = clp_alloc_block(GFP_KERNEL);
if (!rrb)
@ -256,7 +258,7 @@ static int clp_set_pci_fn(u32 *fh, u8 nr_dma_as, u8 command)
rrb->request.hdr.len = sizeof(rrb->request);
rrb->request.hdr.cmd = CLP_SET_PCI_FN;
rrb->response.hdr.len = sizeof(rrb->response);
rrb->request.fh = *fh;
rrb->request.fh = zdev->fh;
rrb->request.oc = command;
rrb->request.ndas = nr_dma_as;
@ -269,12 +271,17 @@ static int clp_set_pci_fn(u32 *fh, u8 nr_dma_as, u8 command)
}
} while (rrb->response.hdr.rsp == CLP_RC_SETPCIFN_BUSY);
if (!rc && rrb->response.hdr.rsp == CLP_RC_OK)
*fh = rrb->response.fh;
else {
if (rc || rrb->response.hdr.rsp != CLP_RC_OK) {
zpci_err("Set PCI FN:\n");
zpci_err_clp(rrb->response.hdr.rsp, rc);
rc = -EIO;
}
if (!rc && rrb->response.hdr.rsp == CLP_RC_OK) {
zdev->fh = rrb->response.fh;
} else if (!rc && rrb->response.hdr.rsp == CLP_RC_SETPCIFN_ALRDY &&
rrb->response.fh == 0) {
/* Function is already in desired state - update handle */
rc = clp_rescan_pci_devices_simple(&fid);
}
clp_free_block(rrb);
return rc;
@ -282,18 +289,17 @@ static int clp_set_pci_fn(u32 *fh, u8 nr_dma_as, u8 command)
int clp_enable_fh(struct zpci_dev *zdev, u8 nr_dma_as)
{
u32 fh = zdev->fh;
int rc;
rc = clp_set_pci_fn(&fh, nr_dma_as, CLP_SET_ENABLE_PCI_FN);
zpci_dbg(3, "ena fid:%x, fh:%x, rc:%d\n", zdev->fid, fh, rc);
rc = clp_set_pci_fn(zdev, nr_dma_as, CLP_SET_ENABLE_PCI_FN);
zpci_dbg(3, "ena fid:%x, fh:%x, rc:%d\n", zdev->fid, zdev->fh, rc);
if (rc)
goto out;
zdev->fh = fh;
if (zpci_use_mio(zdev)) {
rc = clp_set_pci_fn(&fh, nr_dma_as, CLP_SET_ENABLE_MIO);
zpci_dbg(3, "ena mio fid:%x, fh:%x, rc:%d\n", zdev->fid, fh, rc);
rc = clp_set_pci_fn(zdev, nr_dma_as, CLP_SET_ENABLE_MIO);
zpci_dbg(3, "ena mio fid:%x, fh:%x, rc:%d\n",
zdev->fid, zdev->fh, rc);
if (rc)
clp_disable_fh(zdev);
}
@ -309,11 +315,8 @@ int clp_disable_fh(struct zpci_dev *zdev)
if (!zdev_enabled(zdev))
return 0;
rc = clp_set_pci_fn(&fh, 0, CLP_SET_DISABLE_PCI_FN);
rc = clp_set_pci_fn(zdev, 0, CLP_SET_DISABLE_PCI_FN);
zpci_dbg(3, "dis fid:%x, fh:%x, rc:%d\n", zdev->fid, fh, rc);
if (!rc)
zdev->fh = fh;
return rc;
}
@ -370,10 +373,14 @@ static void __clp_add(struct clp_fh_list_entry *entry, void *data)
static void __clp_update(struct clp_fh_list_entry *entry, void *data)
{
struct zpci_dev *zdev;
u32 *fid = data;
if (!entry->vendor_id)
return;
if (fid && *fid != entry->fid)
return;
zdev = get_zdev_by_fid(entry->fid);
if (!zdev)
return;
@ -413,7 +420,10 @@ int clp_rescan_pci_devices(void)
return rc;
}
int clp_rescan_pci_devices_simple(void)
/* Rescan PCI functions and refresh function handles. If fid is non-NULL only
* refresh the handle of the function matching @fid
*/
int clp_rescan_pci_devices_simple(u32 *fid)
{
struct clp_req_rsp_list_pci *rrb;
int rc;
@ -422,7 +432,7 @@ int clp_rescan_pci_devices_simple(void)
if (!rrb)
return -ENOMEM;
rc = clp_list_pci(rrb, NULL, __clp_update);
rc = clp_list_pci(rrb, fid, __clp_update);
clp_free_block(rrb);
return rc;

View file

@ -13,6 +13,8 @@
#include <linux/stat.h>
#include <linux/pci.h>
#include "../../../drivers/pci/pci.h"
#include <asm/sclp.h>
#define zpci_attr(name, fmt, member) \
@ -49,31 +51,50 @@ static DEVICE_ATTR_RO(mio_enabled);
static ssize_t recover_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct kernfs_node *kn;
struct pci_dev *pdev = to_pci_dev(dev);
struct zpci_dev *zdev = to_zpci(pdev);
int ret;
int ret = 0;
if (!device_remove_file_self(dev, attr))
return count;
/* Can't use device_remove_self() here as that would lead us to lock
* the pci_rescan_remove_lock while holding the device' kernfs lock.
* This would create a possible deadlock with disable_slot() which is
* not directly protected by the device' kernfs lock but takes it
* during the device removal which happens under
* pci_rescan_remove_lock.
*
* This is analogous to sdev_store_delete() in
* drivers/scsi/scsi_sysfs.c
*/
kn = sysfs_break_active_protection(&dev->kobj, &attr->attr);
WARN_ON_ONCE(!kn);
/* device_remove_file() serializes concurrent calls ignoring all but
* the first
*/
device_remove_file(dev, attr);
/* A concurrent call to recover_store() may slip between
* sysfs_break_active_protection() and the sysfs file removal.
* Once it unblocks from pci_lock_rescan_remove() the original pdev
* will already be removed.
*/
pci_lock_rescan_remove();
pci_stop_and_remove_bus_device(pdev);
ret = zpci_disable_device(zdev);
if (ret)
goto error;
if (pci_dev_is_added(pdev)) {
pci_stop_and_remove_bus_device(pdev);
ret = zpci_disable_device(zdev);
if (ret)
goto out;
ret = zpci_enable_device(zdev);
if (ret)
goto error;
pci_rescan_bus(zdev->bus);
ret = zpci_enable_device(zdev);
if (ret)
goto out;
pci_rescan_bus(zdev->bus);
}
out:
pci_unlock_rescan_remove();
return count;
error:
pci_unlock_rescan_remove();
return ret;
if (kn)
sysfs_unbreak_active_protection(kn);
return ret ? ret : count;
}
static DEVICE_ATTR_WO(recover);

View file

@ -189,6 +189,8 @@ config SECCOMP
config UML_TIME_TRAVEL_SUPPORT
bool
prompt "Support time-travel mode (e.g. for test execution)"
# inf-cpu mode is incompatible with the benchmarking
depends on !RAID6_PQ_BENCHMARK
help
Enable this option to support time travel inside the UML instance.

View file

@ -147,7 +147,7 @@ config UML_NET
make use of UML networking.
config UML_NET_ETHERTAP
bool "Ethertap transport"
bool "Ethertap transport (obsolete)"
depends on UML_NET
help
The Ethertap User-Mode Linux network transport allows a single
@ -167,14 +167,13 @@ config UML_NET_ETHERTAP
has examples of the UML command line to use to enable Ethertap
networking.
If you'd like to set up an IP network with the host and/or the
outside world, say Y to this, the Daemon Transport and/or the
Slip Transport. You'll need at least one of them, but may choose
more than one without conflict. If you don't need UML networking,
say N.
NOTE: THIS TRANSPORT IS DEPRECATED AND WILL BE REMOVED SOON!!! Please
migrate to UML_NET_VECTOR.
If unsure, say N.
config UML_NET_TUNTAP
bool "TUN/TAP transport"
bool "TUN/TAP transport (obsolete)"
depends on UML_NET
help
The UML TUN/TAP network transport allows a UML instance to exchange
@ -185,8 +184,13 @@ config UML_NET_TUNTAP
To use this transport, your host kernel must have support for TUN/TAP
devices, either built-in or as a module.
NOTE: THIS TRANSPORT IS DEPRECATED AND WILL BE REMOVED SOON!!! Please
migrate to UML_NET_VECTOR.
If unsure, say N.
config UML_NET_SLIP
bool "SLIP transport"
bool "SLIP transport (obsolete)"
depends on UML_NET
help
The slip User-Mode Linux network transport allows a running UML to
@ -201,16 +205,13 @@ config UML_NET_SLIP
has examples of the UML command line to use to enable slip
networking, and details of a few quirks with it.
The Ethertap Transport is preferred over slip because of its
limitations. If you prefer slip, however, say Y here. Otherwise
choose the Multicast transport (to network multiple UMLs on
multiple hosts), Ethertap (to network with the host and the
outside world), and/or the Daemon transport (to network multiple
UMLs on a single host). You may choose more than one without
conflict. If you don't need UML networking, say N.
NOTE: THIS TRANSPORT IS DEPRECATED AND WILL BE REMOVED SOON!!! Please
migrate to UML_NET_VECTOR.
If unsure, say N.
config UML_NET_DAEMON
bool "Daemon transport"
bool "Daemon transport (obsolete)"
depends on UML_NET
help
This User-Mode Linux network transport allows one or more running
@ -225,13 +226,10 @@ config UML_NET_DAEMON
has examples of the UML command line to use to enable Daemon
networking.
If you'd like to set up a network with other UMLs on a single host,
say Y. If you need a network between UMLs on multiple physical
hosts, choose the Multicast Transport. To set up a network with
the host and/or other IP machines, say Y to the Ethertap or Slip
transports. You'll need at least one of them, but may choose
more than one without conflict. If you don't need UML networking,
say N.
NOTE: THIS TRANSPORT IS DEPRECATED AND WILL BE REMOVED SOON!!! Please
migrate to UML_NET_VECTOR.
If unsure, say N.
config UML_NET_VECTOR
bool "Vector I/O high performance network devices"
@ -245,7 +243,7 @@ config UML_NET_VECTOR
drivers.
config UML_NET_VDE
bool "VDE transport"
bool "VDE transport (obsolete)"
depends on UML_NET
help
This User-Mode Linux network transport allows one or more running
@ -263,11 +261,13 @@ config UML_NET_VDE
That site has a good overview of what VDE is and also examples
of the UML command line to use to enable VDE networking.
If you need UML networking with VDE,
say Y.
NOTE: THIS TRANSPORT IS DEPRECATED AND WILL BE REMOVED SOON!!! Please
migrate to UML_NET_VECTOR.
If unsure, say N.
config UML_NET_MCAST
bool "Multicast transport"
bool "Multicast transport (obsolete)"
depends on UML_NET
help
This Multicast User-Mode Linux network transport allows multiple
@ -284,15 +284,13 @@ config UML_NET_MCAST
has examples of the UML command line to use to enable Multicast
networking, and notes about the security of this approach.
If you need UMLs on multiple physical hosts to communicate as if
they shared an Ethernet network, say Y. If you need to communicate
with other IP machines, make sure you select one of the other
transports (possibly in addition to Multicast; they're not
exclusive). If you don't need to network UMLs say N to each of
the transports.
NOTE: THIS TRANSPORT IS DEPRECATED AND WILL BE REMOVED SOON!!! Please
migrate to UML_NET_VECTOR.
If unsure, say N.
config UML_NET_PCAP
bool "pcap transport"
bool "pcap transport (obsolete)"
depends on UML_NET
help
The pcap transport makes a pcap packet stream on the host look
@ -304,11 +302,13 @@ config UML_NET_PCAP
<http://user-mode-linux.sourceforge.net/old/networking.html> That site
has examples of the UML command line to use to enable this option.
If you intend to use UML as a network monitor for the host, say
Y here. Otherwise, say N.
NOTE: THIS TRANSPORT IS DEPRECATED AND WILL BE REMOVED SOON!!! Please
migrate to UML_NET_VECTOR.
If unsure, say N.
config UML_NET_SLIRP
bool "SLiRP transport"
bool "SLiRP transport (obsolete)"
depends on UML_NET
help
The SLiRP User-Mode Linux network transport allows a running UML
@ -328,9 +328,10 @@ config UML_NET_SLIRP
that of a host behind a firewall that masquerades all network
connections passing through it (but is less secure).
To use this you should first have slirp compiled somewhere
accessible on the host, and have read its documentation. If you
don't need UML networking, say N.
NOTE: THIS TRANSPORT IS DEPRECATED AND WILL BE REMOVED SOON!!! Please
migrate to UML_NET_VECTOR.
If unsure, say N.
Startup example: "eth0=slirp,FE:FD:01:02:03:04,/usr/local/bin/slirp"

View file

@ -11,7 +11,7 @@
struct chan_opts {
void (*const announce)(char *dev_name, int dev);
char *xterm_title;
const int raw;
int raw;
};
struct chan_ops {

View file

@ -196,3 +196,11 @@ static int ssl_chan_setup(char *str)
__setup("ssl", ssl_chan_setup);
__channel_help(ssl_chan_setup, "ssl");
static int ssl_non_raw_setup(char *str)
{
opts.raw = 0;
return 1;
}
__setup("ssl-non-raw", ssl_non_raw_setup);
__channel_help(ssl_non_raw_setup, "set serial lines to non-raw mode");

View file

@ -25,5 +25,4 @@ generic-y += switch_to.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += word-at-a-time.h
generic-y += xor.h
generic-y += kprobes.h

View file

@ -82,8 +82,8 @@
__preinit_array_end = .;
}
.init_array : {
/* dummy - we call this ourselves */
__init_array_start = .;
*(.init_array)
__init_array_end = .;
}
.fini_array : {

View file

@ -0,0 +1,7 @@
/* SPDX-License-Identifier: GPL-2.0 */
#include <asm-generic/xor.h>
#include <shared/timer-internal.h>
/* pick an arbitrary one - measuring isn't possible with inf-cpu */
#define XOR_SELECT_TEMPLATE(x) \
(time_travel_mode == TT_MODE_INFCPU ? &xor_block_8regs : NULL)

View file

@ -103,6 +103,7 @@ SECTIONS
be empty, which isn't pretty. */
. = ALIGN(32 / 8);
.preinit_array : { *(.preinit_array) }
.init_array : { *(.init_array) }
.fini_array : { *(.fini_array) }
.data : {
INIT_TASK_DATA(KERNEL_STACK_SIZE)

View file

@ -529,17 +529,24 @@ intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf);
}
static int intel_config_stream(struct sdw_intel *sdw,
static int intel_params_stream(struct sdw_intel *sdw,
struct snd_pcm_substream *substream,
struct snd_soc_dai *dai,
struct snd_pcm_hw_params *hw_params, int link_id)
struct snd_pcm_hw_params *hw_params,
int link_id, int alh_stream_id)
{
struct sdw_intel_link_res *res = sdw->res;
struct sdw_intel_stream_params_data params_data;
if (res->ops && res->ops->config_stream && res->arg)
return res->ops->config_stream(res->arg,
substream, dai, hw_params, link_id);
params_data.substream = substream;
params_data.dai = dai;
params_data.hw_params = hw_params;
params_data.link_id = link_id;
params_data.alh_stream_id = alh_stream_id;
if (res->ops && res->ops->params_stream && res->dev)
return res->ops->params_stream(res->dev,
&params_data);
return -EIO;
}
@ -654,7 +661,8 @@ static int intel_hw_params(struct snd_pcm_substream *substream,
/* Inform DSP about PDI stream number */
ret = intel_config_stream(sdw, substream, dai, params,
ret = intel_params_stream(sdw, substream, dai, params,
sdw->instance,
pdi->intel_alh_id);
if (ret)
goto error;

View file

@ -5,23 +5,26 @@
#define __SDW_INTEL_LOCAL_H
/**
* struct sdw_intel_link_res - Soundwire link resources
* struct sdw_intel_link_res - Soundwire Intel link resource structure,
* typically populated by the controller driver.
* @pdev: platform_device
* @mmio_base: mmio base of SoundWire registers
* @registers: Link IO registers base
* @shim: Audio shim pointer
* @alh: ALH (Audio Link Hub) pointer
* @irq: Interrupt line
* @ops: Shim callback ops
* @arg: Shim callback ops argument
*
* This is set as pdata for each link instance.
* @dev: device implementing hw_params and free callbacks
*/
struct sdw_intel_link_res {
struct platform_device *pdev;
void __iomem *mmio_base; /* not strictly needed, useful for debug */
void __iomem *registers;
void __iomem *shim;
void __iomem *alh;
int irq;
const struct sdw_intel_ops *ops;
void *arg;
struct device *dev;
};
#endif /* __SDW_INTEL_LOCAL_H */

View file

@ -27,19 +27,9 @@ static int link_mask;
module_param_named(sdw_link_mask, link_mask, int, 0444);
MODULE_PARM_DESC(sdw_link_mask, "Intel link mask (one bit per link)");
struct sdw_link_data {
struct sdw_intel_link_res res;
struct platform_device *pdev;
};
struct sdw_intel_ctx {
int count;
struct sdw_link_data *links;
};
static int sdw_intel_cleanup_pdev(struct sdw_intel_ctx *ctx)
{
struct sdw_link_data *link = ctx->links;
struct sdw_intel_link_res *link = ctx->links;
int i;
if (!link)
@ -62,7 +52,7 @@ static struct sdw_intel_ctx
{
struct platform_device_info pdevinfo;
struct platform_device *pdev;
struct sdw_link_data *link;
struct sdw_intel_link_res *link;
struct sdw_intel_ctx *ctx;
struct acpi_device *adev;
int ret, i;
@ -123,14 +113,13 @@ static struct sdw_intel_ctx
continue;
}
link->res.irq = res->irq;
link->res.registers = res->mmio_base + SDW_LINK_BASE
link->registers = res->mmio_base + SDW_LINK_BASE
+ (SDW_LINK_SIZE * i);
link->res.shim = res->mmio_base + SDW_SHIM_BASE;
link->res.alh = res->mmio_base + SDW_ALH_BASE;
link->shim = res->mmio_base + SDW_SHIM_BASE;
link->alh = res->mmio_base + SDW_ALH_BASE;
link->res.ops = res->ops;
link->res.arg = res->arg;
link->ops = res->ops;
link->dev = res->dev;
memset(&pdevinfo, 0, sizeof(pdevinfo));
@ -138,8 +127,6 @@ static struct sdw_intel_ctx
pdevinfo.name = "int-sdw";
pdevinfo.id = i;
pdevinfo.fwnode = acpi_fwnode_handle(adev);
pdevinfo.data = &link->res;
pdevinfo.size_data = sizeof(link->res);
pdev = platform_device_register_full(&pdevinfo);
if (IS_ERR(pdev)) {
@ -216,7 +203,6 @@ void *sdw_intel_init(acpi_handle *parent_handle, struct sdw_intel_res *res)
return sdw_intel_add_controller(res);
}
EXPORT_SYMBOL(sdw_intel_init);
/**
* sdw_intel_exit() - SoundWire Intel exit
@ -224,10 +210,8 @@ EXPORT_SYMBOL(sdw_intel_init);
*
* Delete the controller instances created and cleanup
*/
void sdw_intel_exit(void *arg)
void sdw_intel_exit(struct sdw_intel_ctx *ctx)
{
struct sdw_intel_ctx *ctx = arg;
sdw_intel_cleanup_pdev(ctx);
kfree(ctx);
}

View file

@ -151,8 +151,18 @@ config THERMAL_GOV_POWER_ALLOCATOR
config CPU_THERMAL
bool "Generic cpu cooling support"
depends on CPU_FREQ
depends on THERMAL_OF
help
Enable the CPU cooling features. If the system has no active
cooling device available, this option allows to use the CPU
as a cooling device.
if CPU_THERMAL
config CPU_FREQ_THERMAL
bool "CPU frequency cooling device"
depends on CPU_FREQ
default y
help
This implements the generic cpu cooling mechanism through frequency
reduction. An ACPI version of this already exists
@ -160,7 +170,14 @@ config CPU_THERMAL
This will be useful for platforms using the generic thermal interface
and not the ACPI interface.
If you want this support, you should say Y here.
config CPU_IDLE_THERMAL
bool "CPU idle cooling device"
depends on IDLE_INJECT
help
This implements the CPU cooling mechanism through
idle injection. This will throttle the CPU by injecting
idle cycle.
endif
config CLOCK_THERMAL
bool "Generic clock cooling support"
@ -263,6 +280,20 @@ config SPEAR_THERMAL
Enable this to plug the SPEAr thermal sensor driver into the Linux
thermal framework.
config SUN8I_THERMAL
tristate "Allwinner sun8i thermal driver"
depends on ARCH_SUNXI || COMPILE_TEST
depends on HAS_IOMEM
depends on NVMEM
depends on OF
depends on RESET_CONTROLLER
help
Support for the sun8i thermal sensor driver into the Linux thermal
framework.
To compile this driver as a module, choose M here: the
module will be called sun8i-thermal.
config ROCKCHIP_THERMAL
tristate "Rockchip thermal driver"
depends on ARCH_ROCKCHIP || COMPILE_TEST

View file

@ -19,7 +19,8 @@ thermal_sys-$(CONFIG_THERMAL_GOV_USER_SPACE) += user_space.o
thermal_sys-$(CONFIG_THERMAL_GOV_POWER_ALLOCATOR) += power_allocator.o
# cpufreq cooling
thermal_sys-$(CONFIG_CPU_THERMAL) += cpu_cooling.o
thermal_sys-$(CONFIG_CPU_FREQ_THERMAL) += cpufreq_cooling.o
thermal_sys-$(CONFIG_CPU_IDLE_THERMAL) += cpuidle_cooling.o
# clock cooling
thermal_sys-$(CONFIG_CLOCK_THERMAL) += clock_cooling.o
@ -31,6 +32,7 @@ thermal_sys-$(CONFIG_DEVFREQ_THERMAL) += devfreq_cooling.o
obj-y += broadcom/
obj-$(CONFIG_THERMAL_MMIO) += thermal_mmio.o
obj-$(CONFIG_SPEAR_THERMAL) += spear_thermal.o
obj-$(CONFIG_SUN8I_THERMAL) += sun8i_thermal.o
obj-$(CONFIG_ROCKCHIP_THERMAL) += rockchip_thermal.o
obj-$(CONFIG_RCAR_THERMAL) += rcar_thermal.o
obj-$(CONFIG_RCAR_GEN3_THERMAL) += rcar_gen3_thermal.o

View file

@ -67,7 +67,11 @@
/**
* struct amlogic_thermal_soc_calib_data
* @A, B, m, n: calibration parameters
* @A: calibration parameters
* @B: calibration parameters
* @m: calibration parameters
* @n: calibration parameters
*
* This structure is required for configuration of amlogic thermal driver.
*/
struct amlogic_thermal_soc_calib_data {

View file

@ -155,6 +155,9 @@ static void armadaxp_init(struct platform_device *pdev,
regmap_write(priv->syscon, data->syscon_control1_off, reg);
reg &= ~PMU_TDC0_SW_RST_MASK;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
/* Enable the sensor */
regmap_read(priv->syscon, data->syscon_status_off, &reg);
reg &= ~PMU_TM_DISABLE_MASK;
@ -578,7 +581,7 @@ static const struct armada_thermal_data armadaxp_data = {
.coef_m = 10000000ULL,
.coef_div = 13825,
.syscon_status_off = 0xb0,
.syscon_control1_off = 0xd0,
.syscon_control1_off = 0x2d0,
};
static const struct armada_thermal_data armada370_data = {

View file

@ -1,4 +1,11 @@
# SPDX-License-Identifier: GPL-2.0-only
config BCM2711_THERMAL
tristate "Broadcom AVS RO thermal sensor driver"
depends on ARCH_BCM2835 || COMPILE_TEST
depends on THERMAL_OF && MFD_SYSCON
help
Support for thermal sensors on Broadcom BCM2711 SoCs.
config BCM2835_THERMAL
tristate "Thermal sensors on bcm2835 SoC"
depends on ARCH_BCM2835 || COMPILE_TEST

View file

@ -1,4 +1,5 @@
# SPDX-License-Identifier: GPL-2.0-only
obj-$(CONFIG_BCM2711_THERMAL) += bcm2711_thermal.o
obj-$(CONFIG_BCM2835_THERMAL) += bcm2835_thermal.o
obj-$(CONFIG_BRCMSTB_THERMAL) += brcmstb_thermal.o
obj-$(CONFIG_BCM_NS_THERMAL) += ns-thermal.o

View file

@ -0,0 +1,123 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Broadcom AVS RO thermal sensor driver
*
* based on brcmstb_thermal
*
* Copyright (C) 2020 Stefan Wahren
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/regmap.h>
#include <linux/thermal.h>
#include "../thermal_hwmon.h"
#define AVS_RO_TEMP_STATUS 0x200
#define AVS_RO_TEMP_STATUS_VALID_MSK (BIT(16) | BIT(10))
#define AVS_RO_TEMP_STATUS_DATA_MSK GENMASK(9, 0)
struct bcm2711_thermal_priv {
struct regmap *regmap;
struct thermal_zone_device *thermal;
};
static int bcm2711_get_temp(void *data, int *temp)
{
struct bcm2711_thermal_priv *priv = data;
int slope = thermal_zone_get_slope(priv->thermal);
int offset = thermal_zone_get_offset(priv->thermal);
u32 val;
int ret;
long t;
ret = regmap_read(priv->regmap, AVS_RO_TEMP_STATUS, &val);
if (ret)
return ret;
if (!(val & AVS_RO_TEMP_STATUS_VALID_MSK))
return -EIO;
val &= AVS_RO_TEMP_STATUS_DATA_MSK;
/* Convert a HW code to a temperature reading (millidegree celsius) */
t = slope * val + offset;
*temp = t < 0 ? 0 : t;
return 0;
}
static const struct thermal_zone_of_device_ops bcm2711_thermal_of_ops = {
.get_temp = bcm2711_get_temp,
};
static const struct of_device_id bcm2711_thermal_id_table[] = {
{ .compatible = "brcm,bcm2711-thermal" },
{},
};
MODULE_DEVICE_TABLE(of, bcm2711_thermal_id_table);
static int bcm2711_thermal_probe(struct platform_device *pdev)
{
struct thermal_zone_device *thermal;
struct bcm2711_thermal_priv *priv;
struct device *dev = &pdev->dev;
struct device_node *parent;
struct regmap *regmap;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
/* get regmap from syscon node */
parent = of_get_parent(dev->of_node); /* parent should be syscon node */
regmap = syscon_node_to_regmap(parent);
of_node_put(parent);
if (IS_ERR(regmap)) {
ret = PTR_ERR(regmap);
dev_err(dev, "failed to get regmap: %d\n", ret);
return ret;
}
priv->regmap = regmap;
thermal = devm_thermal_zone_of_sensor_register(dev, 0, priv,
&bcm2711_thermal_of_ops);
if (IS_ERR(thermal)) {
ret = PTR_ERR(thermal);
dev_err(dev, "could not register sensor: %d\n", ret);
return ret;
}
priv->thermal = thermal;
thermal->tzp->no_hwmon = false;
ret = thermal_add_hwmon_sysfs(thermal);
if (ret)
return ret;
return 0;
}
static struct platform_driver bcm2711_thermal_driver = {
.probe = bcm2711_thermal_probe,
.driver = {
.name = "bcm2711_thermal",
.of_match_table = bcm2711_thermal_id_table,
},
};
module_platform_driver(bcm2711_thermal_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Stefan Wahren");
MODULE_DESCRIPTION("Broadcom AVS RO thermal sensor driver");

View file

@ -49,7 +49,7 @@
#define AVS_TMON_TP_TEST_ENABLE 0x20
/* Default coefficients */
#define AVS_TMON_TEMP_SLOPE -487
#define AVS_TMON_TEMP_SLOPE 487
#define AVS_TMON_TEMP_OFFSET 410040
/* HW related temperature constants */
@ -102,29 +102,28 @@ static struct avs_tmon_trip avs_tmon_trips[] = {
},
};
struct brcmstb_thermal_params {
unsigned int offset;
unsigned int mult;
const struct thermal_zone_of_device_ops *of_ops;
};
struct brcmstb_thermal_priv {
void __iomem *tmon_base;
struct device *dev;
struct thermal_zone_device *thermal;
/* Process specific thermal parameters used for calculations */
const struct brcmstb_thermal_params *temp_params;
};
static void avs_tmon_get_coeffs(struct thermal_zone_device *tz, int *slope,
int *offset)
{
*slope = thermal_zone_get_slope(tz);
*offset = thermal_zone_get_offset(tz);
}
/* Convert a HW code to a temperature reading (millidegree celsius) */
static inline int avs_tmon_code_to_temp(struct thermal_zone_device *tz,
static inline int avs_tmon_code_to_temp(struct brcmstb_thermal_priv *priv,
u32 code)
{
const int val = code & AVS_TMON_TEMP_MASK;
int slope, offset;
int offset = priv->temp_params->offset;
int mult = priv->temp_params->mult;
avs_tmon_get_coeffs(tz, &slope, &offset);
return slope * val + offset;
return (offset - (int)((code & AVS_TMON_TEMP_MASK) * mult));
}
/*
@ -133,23 +132,22 @@ static inline int avs_tmon_code_to_temp(struct thermal_zone_device *tz,
* @temp: temperature to convert
* @low: if true, round toward the low side
*/
static inline u32 avs_tmon_temp_to_code(struct thermal_zone_device *tz,
static inline u32 avs_tmon_temp_to_code(struct brcmstb_thermal_priv *priv,
int temp, bool low)
{
int slope, offset;
int offset = priv->temp_params->offset;
int mult = priv->temp_params->mult;
if (temp < AVS_TMON_TEMP_MIN)
return AVS_TMON_TEMP_MAX; /* Maximum code value */
avs_tmon_get_coeffs(tz, &slope, &offset);
return AVS_TMON_TEMP_MAX; /* Maximum code value */
if (temp >= offset)
return 0; /* Minimum code value */
if (low)
return (u32)(DIV_ROUND_UP(offset - temp, abs(slope)));
return (u32)(DIV_ROUND_UP(offset - temp, mult));
else
return (u32)((offset - temp) / abs(slope));
return (u32)((offset - temp) / mult);
}
static int brcmstb_get_temp(void *data, int *temp)
@ -167,7 +165,7 @@ static int brcmstb_get_temp(void *data, int *temp)
val = (val & AVS_TMON_STATUS_data_msk) >> AVS_TMON_STATUS_data_shift;
t = avs_tmon_code_to_temp(priv->thermal, val);
t = avs_tmon_code_to_temp(priv, val);
if (t < 0)
*temp = 0;
else
@ -201,7 +199,7 @@ static int avs_tmon_get_trip_temp(struct brcmstb_thermal_priv *priv,
val &= trip->reg_msk;
val >>= trip->reg_shift;
return avs_tmon_code_to_temp(priv->thermal, val);
return avs_tmon_code_to_temp(priv, val);
}
static void avs_tmon_set_trip_temp(struct brcmstb_thermal_priv *priv,
@ -214,7 +212,7 @@ static void avs_tmon_set_trip_temp(struct brcmstb_thermal_priv *priv,
dev_dbg(priv->dev, "set temp %d to %d\n", type, temp);
/* round toward low temp for the low interrupt */
val = avs_tmon_temp_to_code(priv->thermal, temp,
val = avs_tmon_temp_to_code(priv, temp,
type == TMON_TRIP_TYPE_LOW);
val <<= trip->reg_shift;
@ -231,7 +229,7 @@ static int avs_tmon_get_intr_temp(struct brcmstb_thermal_priv *priv)
u32 val;
val = __raw_readl(priv->tmon_base + AVS_TMON_TEMP_INT_CODE);
return avs_tmon_code_to_temp(priv->thermal, val);
return avs_tmon_code_to_temp(priv, val);
}
static irqreturn_t brcmstb_tmon_irq_thread(int irq, void *data)
@ -290,19 +288,37 @@ static int brcmstb_set_trips(void *data, int low, int high)
return 0;
}
static const struct thermal_zone_of_device_ops of_ops = {
static const struct thermal_zone_of_device_ops brcmstb_16nm_of_ops = {
.get_temp = brcmstb_get_temp,
};
static const struct brcmstb_thermal_params brcmstb_16nm_params = {
.offset = 457829,
.mult = 557,
.of_ops = &brcmstb_16nm_of_ops,
};
static const struct thermal_zone_of_device_ops brcmstb_28nm_of_ops = {
.get_temp = brcmstb_get_temp,
.set_trips = brcmstb_set_trips,
};
static const struct brcmstb_thermal_params brcmstb_28nm_params = {
.offset = 410040,
.mult = 487,
.of_ops = &brcmstb_28nm_of_ops,
};
static const struct of_device_id brcmstb_thermal_id_table[] = {
{ .compatible = "brcm,avs-tmon" },
{ .compatible = "brcm,avs-tmon-bcm7216", .data = &brcmstb_16nm_params },
{ .compatible = "brcm,avs-tmon", .data = &brcmstb_28nm_params },
{},
};
MODULE_DEVICE_TABLE(of, brcmstb_thermal_id_table);
static int brcmstb_thermal_probe(struct platform_device *pdev)
{
const struct thermal_zone_of_device_ops *of_ops;
struct thermal_zone_device *thermal;
struct brcmstb_thermal_priv *priv;
struct resource *res;
@ -312,6 +328,10 @@ static int brcmstb_thermal_probe(struct platform_device *pdev)
if (!priv)
return -ENOMEM;
priv->temp_params = of_device_get_match_data(&pdev->dev);
if (!priv->temp_params)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->tmon_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->tmon_base))
@ -319,9 +339,10 @@ static int brcmstb_thermal_probe(struct platform_device *pdev)
priv->dev = &pdev->dev;
platform_set_drvdata(pdev, priv);
of_ops = priv->temp_params->of_ops;
thermal = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, priv,
&of_ops);
of_ops);
if (IS_ERR(thermal)) {
ret = PTR_ERR(thermal);
dev_err(&pdev->dev, "could not register sensor: %d\n", ret);
@ -331,16 +352,15 @@ static int brcmstb_thermal_probe(struct platform_device *pdev)
priv->thermal = thermal;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "could not get IRQ\n");
return irq;
}
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
brcmstb_tmon_irq_thread, IRQF_ONESHOT,
DRV_NAME, priv);
if (ret < 0) {
dev_err(&pdev->dev, "could not request IRQ: %d\n", ret);
return ret;
if (irq >= 0) {
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
brcmstb_tmon_irq_thread,
IRQF_ONESHOT,
DRV_NAME, priv);
if (ret < 0) {
dev_err(&pdev->dev, "could not request IRQ: %d\n", ret);
return ret;
}
}
dev_info(&pdev->dev, "registered AVS TMON of-sensor driver\n");

View file

@ -7,7 +7,7 @@
* Copyright (C) 2013 Texas Instruments Inc.
* Contact: Eduardo Valentin <eduardo.valentin@ti.com>
*
* Highly based on cpu_cooling.c.
* Highly based on cpufreq_cooling.c.
* Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
* Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
*/

View file

@ -1,6 +1,6 @@
// SPDX-License-Identifier: GPL-2.0
/*
* linux/drivers/thermal/cpu_cooling.c
* linux/drivers/thermal/cpufreq_cooling.c
*
* Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
*
@ -63,6 +63,7 @@ struct time_in_idle {
* @policy: cpufreq policy.
* @node: list_head to link all cpufreq_cooling_device together.
* @idle_time: idle time stats
* @qos_req: PM QoS contraint to apply
*
* This structure is required for keeping information of each registered
* cpufreq_cooling_device.
@ -620,7 +621,7 @@ of_cpufreq_cooling_register(struct cpufreq_policy *policy)
struct thermal_cooling_device *cdev = NULL;
if (!np) {
pr_err("cpu_cooling: OF node not available for cpu%d\n",
pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
policy->cpu);
return NULL;
}
@ -630,7 +631,7 @@ of_cpufreq_cooling_register(struct cpufreq_policy *policy)
cdev = __cpufreq_cooling_register(np, policy, em);
if (IS_ERR(cdev)) {
pr_err("cpu_cooling: cpu%d failed to register as cooling device: %ld\n",
pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
policy->cpu, PTR_ERR(cdev));
cdev = NULL;
}

View file

@ -0,0 +1,232 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Linaro Limited.
*
* Author: Daniel Lezcano <daniel.lezcano@linaro.org>
*
*/
#include <linux/cpu_cooling.h>
#include <linux/cpuidle.h>
#include <linux/err.h>
#include <linux/idle_inject.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/thermal.h>
/**
* struct cpuidle_cooling_device - data for the idle cooling device
* @ii_dev: an atomic to keep track of the last task exiting the idle cycle
* @state: a normalized integer giving the state of the cooling device
*/
struct cpuidle_cooling_device {
struct idle_inject_device *ii_dev;
unsigned long state;
};
static DEFINE_IDA(cpuidle_ida);
/**
* cpuidle_cooling_runtime - Running time computation
* @idle_duration_us: the idle cooling device
* @state: a percentile based number
*
* The running duration is computed from the idle injection duration
* which is fixed. If we reach 100% of idle injection ratio, that
* means the running duration is zero. If we have a 50% ratio
* injection, that means we have equal duration for idle and for
* running duration.
*
* The formula is deduced as follows:
*
* running = idle x ((100 / ratio) - 1)
*
* For precision purpose for integer math, we use the following:
*
* running = (idle x 100) / ratio - idle
*
* For example, if we have an injected duration of 50%, then we end up
* with 10ms of idle injection and 10ms of running duration.
*
* Return: An unsigned int for a usec based runtime duration.
*/
static unsigned int cpuidle_cooling_runtime(unsigned int idle_duration_us,
unsigned long state)
{
if (!state)
return 0;
return ((idle_duration_us * 100) / state) - idle_duration_us;
}
/**
* cpuidle_cooling_get_max_state - Get the maximum state
* @cdev : the thermal cooling device
* @state : a pointer to the state variable to be filled
*
* The function always returns 100 as the injection ratio. It is
* percentile based for consistency accross different platforms.
*
* Return: The function can not fail, it is always zero
*/
static int cpuidle_cooling_get_max_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
/*
* Depending on the configuration or the hardware, the running
* cycle and the idle cycle could be different. We want to
* unify that to an 0..100 interval, so the set state
* interface will be the same whatever the platform is.
*
* The state 100% will make the cluster 100% ... idle. A 0%
* injection ratio means no idle injection at all and 50%
* means for 10ms of idle injection, we have 10ms of running
* time.
*/
*state = 100;
return 0;
}
/**
* cpuidle_cooling_get_cur_state - Get the current cooling state
* @cdev: the thermal cooling device
* @state: a pointer to the state
*
* The function just copies the state value from the private thermal
* cooling device structure, the mapping is 1 <-> 1.
*
* Return: The function can not fail, it is always zero
*/
static int cpuidle_cooling_get_cur_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
struct cpuidle_cooling_device *idle_cdev = cdev->devdata;
*state = idle_cdev->state;
return 0;
}
/**
* cpuidle_cooling_set_cur_state - Set the current cooling state
* @cdev: the thermal cooling device
* @state: the target state
*
* The function checks first if we are initiating the mitigation which
* in turn wakes up all the idle injection tasks belonging to the idle
* cooling device. In any case, it updates the internal state for the
* cooling device.
*
* Return: The function can not fail, it is always zero
*/
static int cpuidle_cooling_set_cur_state(struct thermal_cooling_device *cdev,
unsigned long state)
{
struct cpuidle_cooling_device *idle_cdev = cdev->devdata;
struct idle_inject_device *ii_dev = idle_cdev->ii_dev;
unsigned long current_state = idle_cdev->state;
unsigned int runtime_us, idle_duration_us;
idle_cdev->state = state;
idle_inject_get_duration(ii_dev, &runtime_us, &idle_duration_us);
runtime_us = cpuidle_cooling_runtime(idle_duration_us, state);
idle_inject_set_duration(ii_dev, runtime_us, idle_duration_us);
if (current_state == 0 && state > 0) {
idle_inject_start(ii_dev);
} else if (current_state > 0 && !state) {
idle_inject_stop(ii_dev);
}
return 0;
}
/**
* cpuidle_cooling_ops - thermal cooling device ops
*/
static struct thermal_cooling_device_ops cpuidle_cooling_ops = {
.get_max_state = cpuidle_cooling_get_max_state,
.get_cur_state = cpuidle_cooling_get_cur_state,
.set_cur_state = cpuidle_cooling_set_cur_state,
};
/**
* cpuidle_of_cooling_register - Idle cooling device initialization function
* @drv: a cpuidle driver structure pointer
* @np: a node pointer to a device tree cooling device node
*
* This function is in charge of creating a cooling device per cpuidle
* driver and register it to thermal framework.
*
* Return: zero on success, or negative value corresponding to the
* error detected in the underlying subsystems.
*/
int cpuidle_of_cooling_register(struct device_node *np,
struct cpuidle_driver *drv)
{
struct idle_inject_device *ii_dev;
struct cpuidle_cooling_device *idle_cdev;
struct thermal_cooling_device *cdev;
char dev_name[THERMAL_NAME_LENGTH];
int id, ret;
idle_cdev = kzalloc(sizeof(*idle_cdev), GFP_KERNEL);
if (!idle_cdev) {
ret = -ENOMEM;
goto out;
}
id = ida_simple_get(&cpuidle_ida, 0, 0, GFP_KERNEL);
if (id < 0) {
ret = id;
goto out_kfree;
}
ii_dev = idle_inject_register(drv->cpumask);
if (!ii_dev) {
ret = -EINVAL;
goto out_id;
}
idle_inject_set_duration(ii_dev, TICK_USEC, TICK_USEC);
idle_cdev->ii_dev = ii_dev;
snprintf(dev_name, sizeof(dev_name), "thermal-idle-%d", id);
cdev = thermal_of_cooling_device_register(np, dev_name, idle_cdev,
&cpuidle_cooling_ops);
if (IS_ERR(cdev)) {
ret = PTR_ERR(cdev);
goto out_unregister;
}
return 0;
out_unregister:
idle_inject_unregister(ii_dev);
out_id:
ida_simple_remove(&cpuidle_ida, id);
out_kfree:
kfree(idle_cdev);
out:
return ret;
}
/**
* cpuidle_cooling_register - Idle cooling device initialization function
* @drv: a cpuidle driver structure pointer
*
* This function is in charge of creating a cooling device per cpuidle
* driver and register it to thermal framework.
*
* Return: zero on success, or negative value corresponding to the
* error detected in the underlying subsystems.
*/
int cpuidle_cooling_register(struct cpuidle_driver *drv)
{
return cpuidle_of_cooling_register(NULL, drv);
}

View file

@ -152,8 +152,8 @@ static irqreturn_t prcmu_high_irq_handler(int irq, void *irq_data)
db8500_thermal_update_config(th, idx, THERMAL_TREND_RAISING,
next_low, next_high);
dev_info(&th->tz->device,
"PRCMU set max %ld, min %ld\n", next_high, next_low);
dev_dbg(&th->tz->device,
"PRCMU set max %ld, min %ld\n", next_high, next_low);
} else if (idx == num_points - 1)
/* So we roof out 1 degree over the max point */
th->interpolated_temp = db8500_thermal_points[idx] + 1;

View file

@ -53,6 +53,7 @@ static DEFINE_IDA(devfreq_ida);
* 'utilization' (which is 'busy_time / 'total_time').
* The 'res_util' range is from 100 to (power_table[state] * 100)
* for the corresponding 'state'.
* @capped_state: index to cooling state with in dynamic power budget
*/
struct devfreq_cooling_device {
int id;
@ -587,7 +588,7 @@ EXPORT_SYMBOL_GPL(devfreq_cooling_register);
/**
* devfreq_cooling_unregister() - Unregister devfreq cooling device.
* @dfc: Pointer to devfreq cooling device to unregister.
* @cdev: Pointer to devfreq cooling device to unregister.
*/
void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
{

View file

@ -58,8 +58,8 @@ static long get_target_state(struct thermal_zone_device *tz,
/**
* fair_share_throttle - throttles devices associated with the given zone
* @tz - thermal_zone_device
* @trip - trip point index
* @tz: thermal_zone_device
* @trip: trip point index
*
* Throttling Logic: This uses three parameters to calculate the new
* throttle state of the cooling devices associated with the given zone.

View file

@ -71,8 +71,8 @@ static void thermal_zone_trip_update(struct thermal_zone_device *tz, int trip)
/**
* bang_bang_control - controls devices associated with the given zone
* @tz - thermal_zone_device
* @trip - the trip point
* @tz: thermal_zone_device
* @trip: the trip point
*
* Regulation Logic: a two point regulation, deliver cooling state depending
* on the previous state shown in this diagram:

View file

@ -42,6 +42,9 @@
/* IceLake thermal reporting device */
#define PCI_DEVICE_ID_PROC_ICL_THERMAL 0x8a03
/* JasperLake thermal reporting device */
#define PCI_DEVICE_ID_PROC_JSL_THERMAL 0x4503
#define DRV_NAME "proc_thermal"
struct power_config {
@ -724,6 +727,7 @@ static const struct pci_device_id proc_thermal_pci_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_GLK_THERMAL)},
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_ICL_THERMAL),
.driver_data = (kernel_ulong_t)&rapl_mmio_hsw, },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_JSL_THERMAL)},
{ 0, },
};

View file

@ -23,6 +23,7 @@
#define PCH_THERMAL_DID_SKL_H 0xA131 /* Skylake PCH 100 series */
#define PCH_THERMAL_DID_CNL 0x9Df9 /* CNL PCH */
#define PCH_THERMAL_DID_CNL_H 0xA379 /* CNL-H PCH */
#define PCH_THERMAL_DID_CML_H 0X06F9 /* CML-H PCH */
/* Wildcat Point-LP PCH Thermal registers */
#define WPT_TEMP 0x0000 /* Temperature */
@ -272,6 +273,7 @@ enum board_ids {
board_wpt,
board_skl,
board_cnl,
board_cml,
};
static const struct board_info {
@ -294,6 +296,10 @@ static const struct board_info {
.name = "pch_cannonlake",
.ops = &pch_dev_ops_wpt,
},
[board_cml] = {
.name = "pch_cometlake",
.ops = &pch_dev_ops_wpt,
}
};
static int intel_pch_thermal_probe(struct pci_dev *pdev,
@ -365,7 +371,7 @@ static void intel_pch_thermal_remove(struct pci_dev *pdev)
thermal_zone_device_unregister(ptd->tzd);
iounmap(ptd->hw_base);
pci_set_drvdata(pdev, NULL);
pci_release_region(pdev, 0);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
@ -398,6 +404,8 @@ static const struct pci_device_id intel_pch_thermal_id[] = {
.driver_data = board_cnl, },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCH_THERMAL_DID_CNL_H),
.driver_data = board_cnl, },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCH_THERMAL_DID_CML_H),
.driver_data = board_cml, },
{ 0, },
};
MODULE_DEVICE_TABLE(pci, intel_pch_thermal_id);

View file

@ -33,7 +33,7 @@ struct max77620_therm_info {
/**
* max77620_thermal_read_temp: Read PMIC die temperatue.
* @data: Device specific data.
* temp: Temperature in millidegrees Celsius
* @temp: Temperature in millidegrees Celsius
*
* The actual temperature of PMIC die is not available from PMIC.
* PMIC only tells the status if it has crossed or not the threshold level

View file

@ -358,7 +358,7 @@ static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
/**
/*
* The MT8173 thermal controller has four banks. Each bank can read up to
* four temperature sensors simultaneously. The MT8173 has a total of 5
* temperature sensors. We use each bank to measure a certain area of the
@ -400,7 +400,7 @@ static const struct mtk_thermal_data mt8173_thermal_data = {
.sensor_mux_values = mt8173_mux_values,
};
/**
/*
* The MT2701 thermal controller has one bank, which can read up to
* three temperature sensors simultaneously. The MT2701 has a total of 3
* temperature sensors.
@ -430,7 +430,7 @@ static const struct mtk_thermal_data mt2701_thermal_data = {
.sensor_mux_values = mt2701_mux_values,
};
/**
/*
* The MT2712 thermal controller has one bank, which can read up to
* four temperature sensors simultaneously. The MT2712 has a total of 4
* temperature sensors.
@ -484,7 +484,7 @@ static const struct mtk_thermal_data mt7622_thermal_data = {
.sensor_mux_values = mt7622_mux_values,
};
/**
/*
* The MT8183 thermal controller has one bank for the current SW framework.
* The MT8183 has a total of 6 temperature sensors.
* There are two thermal controller to control the six sensor.
@ -495,7 +495,6 @@ static const struct mtk_thermal_data mt7622_thermal_data = {
* data, and this indeed needs the temperatures of the individual banks
* for making better decisions.
*/
static const struct mtk_thermal_data mt8183_thermal_data = {
.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
.num_banks = MT8183_NUM_SENSORS_PER_ZONE,
@ -519,7 +518,8 @@ static const struct mtk_thermal_data mt8183_thermal_data = {
/**
* raw_to_mcelsius - convert a raw ADC value to mcelsius
* @mt: The thermal controller
* @mt: The thermal controller
* @sensno: sensor number
* @raw: raw ADC value
*
* This converts the raw ADC value to mcelsius using the SoC specific

View file

@ -493,7 +493,7 @@ thermal_zone_of_sensor_register(struct device *dev, int sensor_id, void *data,
if (!dev || !dev->of_node) {
of_node_put(np);
return ERR_PTR(-EINVAL);
return ERR_PTR(-ENODEV);
}
sensor_np = of_node_get(dev->of_node);
@ -754,7 +754,7 @@ end:
return ret;
}
/**
/*
* It maps 'enum thermal_trip_type' found in include/linux/thermal.h
* into the device tree binding of 'trip', property type.
*/
@ -977,7 +977,7 @@ free_tz:
return ERR_PTR(ret);
}
static inline void of_thermal_free_zone(struct __thermal_zone *tz)
static __init void of_thermal_free_zone(struct __thermal_zone *tz)
{
struct __thermal_bind_params *tbp;
int i, j;
@ -998,6 +998,38 @@ static inline void of_thermal_free_zone(struct __thermal_zone *tz)
kfree(tz);
}
/**
* of_thermal_destroy_zones - remove all zones parsed and allocated resources
*
* Finds all zones parsed and added to the thermal framework and remove them
* from the system, together with their resources.
*
*/
static __init void of_thermal_destroy_zones(void)
{
struct device_node *np, *child;
np = of_find_node_by_name(NULL, "thermal-zones");
if (!np) {
pr_debug("unable to find thermal zones\n");
return;
}
for_each_available_child_of_node(np, child) {
struct thermal_zone_device *zone;
zone = thermal_zone_get_zone_by_name(child->name);
if (IS_ERR(zone))
continue;
thermal_zone_device_unregister(zone);
kfree(zone->tzp);
kfree(zone->ops);
of_thermal_free_zone(zone->devdata);
}
of_node_put(np);
}
/**
* of_parse_thermal_zones - parse device tree thermal data
*
@ -1087,35 +1119,3 @@ exit_free:
return -ENOMEM;
}
/**
* of_thermal_destroy_zones - remove all zones parsed and allocated resources
*
* Finds all zones parsed and added to the thermal framework and remove them
* from the system, together with their resources.
*
*/
void of_thermal_destroy_zones(void)
{
struct device_node *np, *child;
np = of_find_node_by_name(NULL, "thermal-zones");
if (!np) {
pr_debug("unable to find thermal zones\n");
return;
}
for_each_available_child_of_node(np, child) {
struct thermal_zone_device *zone;
zone = thermal_zone_get_zone_by_name(child->name);
if (IS_ERR(zone))
continue;
thermal_zone_device_unregister(zone);
kfree(zone->tzp);
kfree(zone->ops);
of_thermal_free_zone(zone->devdata);
}
of_node_put(np);
}

View file

@ -9,9 +9,12 @@
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/regmap.h>
#include <linux/sizes.h>
#include <linux/thermal.h>
#include "thermal_core.h"
#include "thermal_hwmon.h"
#define SITES_MAX 16
#define TMR_DISABLE 0x0
@ -24,129 +27,80 @@
#define TMU_VER1 0x1
#define TMU_VER2 0x2
/*
* QorIQ TMU Registers
*/
struct qoriq_tmu_site_regs {
u32 tritsr; /* Immediate Temperature Site Register */
u32 tratsr; /* Average Temperature Site Register */
u8 res0[0x8];
};
#define REGS_TMR 0x000 /* Mode Register */
#define TMR_DISABLE 0x0
#define TMR_ME 0x80000000
#define TMR_ALPF 0x0c000000
#define TMR_MSITE_ALL GENMASK(15, 0)
struct qoriq_tmu_regs_v1 {
u32 tmr; /* Mode Register */
u32 tsr; /* Status Register */
u32 tmtmir; /* Temperature measurement interval Register */
u8 res0[0x14];
u32 tier; /* Interrupt Enable Register */
u32 tidr; /* Interrupt Detect Register */
u32 tiscr; /* Interrupt Site Capture Register */
u32 ticscr; /* Interrupt Critical Site Capture Register */
u8 res1[0x10];
u32 tmhtcrh; /* High Temperature Capture Register */
u32 tmhtcrl; /* Low Temperature Capture Register */
u8 res2[0x8];
u32 tmhtitr; /* High Temperature Immediate Threshold */
u32 tmhtatr; /* High Temperature Average Threshold */
u32 tmhtactr; /* High Temperature Average Crit Threshold */
u8 res3[0x24];
u32 ttcfgr; /* Temperature Configuration Register */
u32 tscfgr; /* Sensor Configuration Register */
u8 res4[0x78];
struct qoriq_tmu_site_regs site[SITES_MAX];
u8 res5[0x9f8];
u32 ipbrr0; /* IP Block Revision Register 0 */
u32 ipbrr1; /* IP Block Revision Register 1 */
u8 res6[0x310];
u32 ttrcr[4]; /* Temperature Range Control Register */
};
#define REGS_TMTMIR 0x008 /* Temperature measurement interval Register */
#define TMTMIR_DEFAULT 0x0000000f
struct qoriq_tmu_regs_v2 {
u32 tmr; /* Mode Register */
u32 tsr; /* Status Register */
u32 tmsr; /* monitor site register */
u32 tmtmir; /* Temperature measurement interval Register */
u8 res0[0x10];
u32 tier; /* Interrupt Enable Register */
u32 tidr; /* Interrupt Detect Register */
u8 res1[0x8];
u32 tiiscr; /* interrupt immediate site capture register */
u32 tiascr; /* interrupt average site capture register */
u32 ticscr; /* Interrupt Critical Site Capture Register */
u32 res2;
u32 tmhtcr; /* monitor high temperature capture register */
u32 tmltcr; /* monitor low temperature capture register */
u32 tmrtrcr; /* monitor rising temperature rate capture register */
u32 tmftrcr; /* monitor falling temperature rate capture register */
u32 tmhtitr; /* High Temperature Immediate Threshold */
u32 tmhtatr; /* High Temperature Average Threshold */
u32 tmhtactr; /* High Temperature Average Crit Threshold */
u32 res3;
u32 tmltitr; /* monitor low temperature immediate threshold */
u32 tmltatr; /* monitor low temperature average threshold register */
u32 tmltactr; /* monitor low temperature average critical threshold */
u32 res4;
u32 tmrtrctr; /* monitor rising temperature rate critical threshold */
u32 tmftrctr; /* monitor falling temperature rate critical threshold*/
u8 res5[0x8];
u32 ttcfgr; /* Temperature Configuration Register */
u32 tscfgr; /* Sensor Configuration Register */
u8 res6[0x78];
struct qoriq_tmu_site_regs site[SITES_MAX];
u8 res7[0x9f8];
u32 ipbrr0; /* IP Block Revision Register 0 */
u32 ipbrr1; /* IP Block Revision Register 1 */
u8 res8[0x300];
u32 teumr0;
u32 teumr1;
u32 teumr2;
u32 res9;
u32 ttrcr[4]; /* Temperature Range Control Register */
};
#define REGS_V2_TMSR 0x008 /* monitor site register */
struct qoriq_tmu_data;
#define REGS_V2_TMTMIR 0x00c /* Temperature measurement interval Register */
#define REGS_TIER 0x020 /* Interrupt Enable Register */
#define TIER_DISABLE 0x0
#define REGS_TTCFGR 0x080 /* Temperature Configuration Register */
#define REGS_TSCFGR 0x084 /* Sensor Configuration Register */
#define REGS_TRITSR(n) (0x100 + 16 * (n)) /* Immediate Temperature
* Site Register
*/
#define TRITSR_V BIT(31)
#define REGS_TTRnCR(n) (0xf10 + 4 * (n)) /* Temperature Range n
* Control Register
*/
#define REGS_IPBRR(n) (0xbf8 + 4 * (n)) /* IP Block Revision
* Register n
*/
#define REGS_V2_TEUMR(n) (0xf00 + 4 * (n))
/*
* Thermal zone data
*/
struct qoriq_sensor {
struct thermal_zone_device *tzd;
struct qoriq_tmu_data *qdata;
int id;
};
struct qoriq_tmu_data {
int ver;
struct qoriq_tmu_regs_v1 __iomem *regs;
struct qoriq_tmu_regs_v2 __iomem *regs_v2;
struct regmap *regmap;
struct clk *clk;
bool little_endian;
struct qoriq_sensor *sensor[SITES_MAX];
struct qoriq_sensor sensor[SITES_MAX];
};
static void tmu_write(struct qoriq_tmu_data *p, u32 val, void __iomem *addr)
static struct qoriq_tmu_data *qoriq_sensor_to_data(struct qoriq_sensor *s)
{
if (p->little_endian)
iowrite32(val, addr);
else
iowrite32be(val, addr);
}
static u32 tmu_read(struct qoriq_tmu_data *p, void __iomem *addr)
{
if (p->little_endian)
return ioread32(addr);
else
return ioread32be(addr);
return container_of(s, struct qoriq_tmu_data, sensor[s->id]);
}
static int tmu_get_temp(void *p, int *temp)
{
struct qoriq_sensor *qsensor = p;
struct qoriq_tmu_data *qdata = qsensor->qdata;
struct qoriq_tmu_data *qdata = qoriq_sensor_to_data(qsensor);
u32 val;
/*
* REGS_TRITSR(id) has the following layout:
*
* 31 ... 7 6 5 4 3 2 1 0
* V TEMP
*
* Where V bit signifies if the measurement is ready and is
* within sensor range. TEMP is an 8 bit value representing
* temperature in C.
*/
if (regmap_read_poll_timeout(qdata->regmap,
REGS_TRITSR(qsensor->id),
val,
val & TRITSR_V,
USEC_PER_MSEC,
10 * USEC_PER_MSEC))
return -ENODATA;
val = tmu_read(qdata, &qdata->regs->site[qsensor->id].tritsr);
*temp = (val & 0xff) * 1000;
return 0;
@ -156,84 +110,82 @@ static const struct thermal_zone_of_device_ops tmu_tz_ops = {
.get_temp = tmu_get_temp,
};
static int qoriq_tmu_register_tmu_zone(struct platform_device *pdev)
static int qoriq_tmu_register_tmu_zone(struct device *dev,
struct qoriq_tmu_data *qdata)
{
struct qoriq_tmu_data *qdata = platform_get_drvdata(pdev);
int id, sites = 0;
int id;
for (id = 0; id < SITES_MAX; id++) {
qdata->sensor[id] = devm_kzalloc(&pdev->dev,
sizeof(struct qoriq_sensor), GFP_KERNEL);
if (!qdata->sensor[id])
return -ENOMEM;
qdata->sensor[id]->id = id;
qdata->sensor[id]->qdata = qdata;
qdata->sensor[id]->tzd = devm_thermal_zone_of_sensor_register(
&pdev->dev, id, qdata->sensor[id], &tmu_tz_ops);
if (IS_ERR(qdata->sensor[id]->tzd)) {
if (PTR_ERR(qdata->sensor[id]->tzd) == -ENODEV)
continue;
else
return PTR_ERR(qdata->sensor[id]->tzd);
}
if (qdata->ver == TMU_VER1)
sites |= 0x1 << (15 - id);
else
sites |= 0x1 << id;
if (qdata->ver == TMU_VER1) {
regmap_write(qdata->regmap, REGS_TMR,
TMR_MSITE_ALL | TMR_ME | TMR_ALPF);
} else {
regmap_write(qdata->regmap, REGS_V2_TMSR, TMR_MSITE_ALL);
regmap_write(qdata->regmap, REGS_TMR, TMR_ME | TMR_ALPF_V2);
}
/* Enable monitoring */
if (sites != 0) {
if (qdata->ver == TMU_VER1) {
tmu_write(qdata, sites | TMR_ME | TMR_ALPF,
&qdata->regs->tmr);
} else {
tmu_write(qdata, sites, &qdata->regs_v2->tmsr);
tmu_write(qdata, TMR_ME | TMR_ALPF_V2,
&qdata->regs_v2->tmr);
for (id = 0; id < SITES_MAX; id++) {
struct thermal_zone_device *tzd;
struct qoriq_sensor *sensor = &qdata->sensor[id];
int ret;
sensor->id = id;
tzd = devm_thermal_zone_of_sensor_register(dev, id,
sensor,
&tmu_tz_ops);
ret = PTR_ERR_OR_ZERO(tzd);
if (ret) {
if (ret == -ENODEV)
continue;
regmap_write(qdata->regmap, REGS_TMR, TMR_DISABLE);
return ret;
}
if (devm_thermal_add_hwmon_sysfs(tzd))
dev_warn(dev,
"Failed to add hwmon sysfs attributes\n");
}
return 0;
}
static int qoriq_tmu_calibration(struct platform_device *pdev)
static int qoriq_tmu_calibration(struct device *dev,
struct qoriq_tmu_data *data)
{
int i, val, len;
u32 range[4];
const u32 *calibration;
struct device_node *np = pdev->dev.of_node;
struct qoriq_tmu_data *data = platform_get_drvdata(pdev);
struct device_node *np = dev->of_node;
len = of_property_count_u32_elems(np, "fsl,tmu-range");
if (len < 0 || len > 4) {
dev_err(&pdev->dev, "invalid range data.\n");
dev_err(dev, "invalid range data.\n");
return len;
}
val = of_property_read_u32_array(np, "fsl,tmu-range", range, len);
if (val != 0) {
dev_err(&pdev->dev, "failed to read range data.\n");
dev_err(dev, "failed to read range data.\n");
return val;
}
/* Init temperature range registers */
for (i = 0; i < len; i++)
tmu_write(data, range[i], &data->regs->ttrcr[i]);
regmap_write(data->regmap, REGS_TTRnCR(i), range[i]);
calibration = of_get_property(np, "fsl,tmu-calibration", &len);
if (calibration == NULL || len % 8) {
dev_err(&pdev->dev, "invalid calibration data.\n");
dev_err(dev, "invalid calibration data.\n");
return -ENODEV;
}
for (i = 0; i < len; i += 8, calibration += 2) {
val = of_read_number(calibration, 1);
tmu_write(data, val, &data->regs->ttcfgr);
regmap_write(data->regmap, REGS_TTCFGR, val);
val = of_read_number(calibration + 1, 1);
tmu_write(data, val, &data->regs->tscfgr);
regmap_write(data->regmap, REGS_TSCFGR, val);
}
return 0;
@ -242,76 +194,117 @@ static int qoriq_tmu_calibration(struct platform_device *pdev)
static void qoriq_tmu_init_device(struct qoriq_tmu_data *data)
{
/* Disable interrupt, using polling instead */
tmu_write(data, TIER_DISABLE, &data->regs->tier);
regmap_write(data->regmap, REGS_TIER, TIER_DISABLE);
/* Set update_interval */
if (data->ver == TMU_VER1) {
tmu_write(data, TMTMIR_DEFAULT, &data->regs->tmtmir);
regmap_write(data->regmap, REGS_TMTMIR, TMTMIR_DEFAULT);
} else {
tmu_write(data, TMTMIR_DEFAULT, &data->regs_v2->tmtmir);
tmu_write(data, TEUMR0_V2, &data->regs_v2->teumr0);
regmap_write(data->regmap, REGS_V2_TMTMIR, TMTMIR_DEFAULT);
regmap_write(data->regmap, REGS_V2_TEUMR(0), TEUMR0_V2);
}
/* Disable monitoring */
tmu_write(data, TMR_DISABLE, &data->regs->tmr);
regmap_write(data->regmap, REGS_TMR, TMR_DISABLE);
}
static const struct regmap_range qoriq_yes_ranges[] = {
regmap_reg_range(REGS_TMR, REGS_TSCFGR),
regmap_reg_range(REGS_TTRnCR(0), REGS_TTRnCR(3)),
regmap_reg_range(REGS_V2_TEUMR(0), REGS_V2_TEUMR(2)),
regmap_reg_range(REGS_IPBRR(0), REGS_IPBRR(1)),
/* Read only registers below */
regmap_reg_range(REGS_TRITSR(0), REGS_TRITSR(15)),
};
static const struct regmap_access_table qoriq_wr_table = {
.yes_ranges = qoriq_yes_ranges,
.n_yes_ranges = ARRAY_SIZE(qoriq_yes_ranges) - 1,
};
static const struct regmap_access_table qoriq_rd_table = {
.yes_ranges = qoriq_yes_ranges,
.n_yes_ranges = ARRAY_SIZE(qoriq_yes_ranges),
};
static int qoriq_tmu_probe(struct platform_device *pdev)
{
int ret;
u32 ver;
struct qoriq_tmu_data *data;
struct device_node *np = pdev->dev.of_node;
struct device *dev = &pdev->dev;
const bool little_endian = of_property_read_bool(np, "little-endian");
const enum regmap_endian format_endian =
little_endian ? REGMAP_ENDIAN_LITTLE : REGMAP_ENDIAN_BIG;
const struct regmap_config regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.rd_table = &qoriq_rd_table,
.wr_table = &qoriq_wr_table,
.val_format_endian = format_endian,
.max_register = SZ_4K,
};
void __iomem *base;
data = devm_kzalloc(&pdev->dev, sizeof(struct qoriq_tmu_data),
data = devm_kzalloc(dev, sizeof(struct qoriq_tmu_data),
GFP_KERNEL);
if (!data)
return -ENOMEM;
platform_set_drvdata(pdev, data);
data->little_endian = of_property_read_bool(np, "little-endian");
data->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(data->regs)) {
dev_err(&pdev->dev, "Failed to get memory region\n");
return PTR_ERR(data->regs);
base = devm_platform_ioremap_resource(pdev, 0);
ret = PTR_ERR_OR_ZERO(base);
if (ret) {
dev_err(dev, "Failed to get memory region\n");
return ret;
}
data->clk = devm_clk_get_optional(&pdev->dev, NULL);
data->regmap = devm_regmap_init_mmio(dev, base, &regmap_config);
ret = PTR_ERR_OR_ZERO(data->regmap);
if (ret) {
dev_err(dev, "Failed to init regmap (%d)\n", ret);
return ret;
}
data->clk = devm_clk_get_optional(dev, NULL);
if (IS_ERR(data->clk))
return PTR_ERR(data->clk);
ret = clk_prepare_enable(data->clk);
if (ret) {
dev_err(&pdev->dev, "Failed to enable clock\n");
dev_err(dev, "Failed to enable clock\n");
return ret;
}
/* version register offset at: 0xbf8 on both v1 and v2 */
ver = tmu_read(data, &data->regs->ipbrr0);
ret = regmap_read(data->regmap, REGS_IPBRR(0), &ver);
if (ret) {
dev_err(&pdev->dev, "Failed to read IP block version\n");
return ret;
}
data->ver = (ver >> 8) & 0xff;
if (data->ver == TMU_VER2)
data->regs_v2 = (void __iomem *)data->regs;
qoriq_tmu_init_device(data); /* TMU initialization */
ret = qoriq_tmu_calibration(pdev); /* TMU calibration */
ret = qoriq_tmu_calibration(dev, data); /* TMU calibration */
if (ret < 0)
goto err;
ret = qoriq_tmu_register_tmu_zone(pdev);
ret = qoriq_tmu_register_tmu_zone(dev, data);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to register sensors\n");
dev_err(dev, "Failed to register sensors\n");
ret = -ENODEV;
goto err;
}
platform_set_drvdata(pdev, data);
return 0;
err:
clk_disable_unprepare(data->clk);
platform_set_drvdata(pdev, NULL);
return ret;
}
@ -321,24 +314,21 @@ static int qoriq_tmu_remove(struct platform_device *pdev)
struct qoriq_tmu_data *data = platform_get_drvdata(pdev);
/* Disable monitoring */
tmu_write(data, TMR_DISABLE, &data->regs->tmr);
regmap_write(data->regmap, REGS_TMR, TMR_DISABLE);
clk_disable_unprepare(data->clk);
platform_set_drvdata(pdev, NULL);
return 0;
}
static int __maybe_unused qoriq_tmu_suspend(struct device *dev)
{
u32 tmr;
struct qoriq_tmu_data *data = dev_get_drvdata(dev);
int ret;
/* Disable monitoring */
tmr = tmu_read(data, &data->regs->tmr);
tmr &= ~TMR_ME;
tmu_write(data, tmr, &data->regs->tmr);
ret = regmap_update_bits(data->regmap, REGS_TMR, TMR_ME, 0);
if (ret)
return ret;
clk_disable_unprepare(data->clk);
@ -347,7 +337,6 @@ static int __maybe_unused qoriq_tmu_suspend(struct device *dev)
static int __maybe_unused qoriq_tmu_resume(struct device *dev)
{
u32 tmr;
int ret;
struct qoriq_tmu_data *data = dev_get_drvdata(dev);
@ -356,11 +345,7 @@ static int __maybe_unused qoriq_tmu_resume(struct device *dev)
return ret;
/* Enable monitoring */
tmr = tmu_read(data, &data->regs->tmr);
tmr |= TMR_ME;
tmu_write(data, tmr, &data->regs->tmr);
return 0;
return regmap_update_bits(data->regmap, REGS_TMR, TMR_ME, TMR_ME);
}
static SIMPLE_DEV_PM_OPS(qoriq_tmu_pm_ops,

View file

@ -182,9 +182,7 @@ static int rcar_gen3_thermal_get_temp(void *devdata, int *temp)
tsc->coef.a2);
mcelsius = FIXPT_TO_MCELSIUS(val);
/* Make sure we are inside specifications */
if ((mcelsius < MCELSIUS(-40)) || (mcelsius > MCELSIUS(125)))
return -EIO;
/* Guaranteed operating range is -40C to 125C. */
/* Round value to device granularity setting */
*temp = rcar_gen3_thermal_round(mcelsius);

View file

@ -219,7 +219,7 @@ static int rcar_thermal_update_temp(struct rcar_thermal_priv *priv)
* to get stable temperature.
* see "Usage Notes" on datasheet
*/
udelay(300);
usleep_range(300, 400);
new = rcar_thermal_read(priv, THSSR) & CTEMP;
if (new == old) {
@ -275,12 +275,7 @@ static int rcar_thermal_get_current_temp(struct rcar_thermal_priv *priv,
tmp = MCELSIUS((priv->ctemp * 5) - 60);
mutex_unlock(&priv->lock);
if ((tmp < MCELSIUS(-45)) || (tmp > MCELSIUS(125))) {
struct device *dev = rcar_priv_to_dev(priv);
dev_err(dev, "it couldn't measure temperature correctly\n");
return -EIO;
}
/* Guaranteed operating range is -45C to 125C. */
*temp = tmp;

View file

@ -19,7 +19,7 @@
#include <linux/mfd/syscon.h>
#include <linux/pinctrl/consumer.h>
/**
/*
* If the temperature over a period of time High,
* the resulting TSHUT gave CRU module,let it reset the entire chip,
* or via GPIO give PMIC.
@ -29,7 +29,7 @@ enum tshut_mode {
TSHUT_MODE_GPIO,
};
/**
/*
* The system Temperature Sensors tshut(tshut) polarity
* the bit 8 is tshut polarity.
* 0: low active, 1: high active
@ -39,7 +39,7 @@ enum tshut_polarity {
TSHUT_HIGH_ACTIVE,
};
/**
/*
* The system has two Temperature Sensors.
* sensor0 is for CPU, and sensor1 is for GPU.
*/
@ -48,7 +48,7 @@ enum sensor_id {
SENSOR_GPU,
};
/**
/*
* The conversion table has the adc value and temperature.
* ADC_DECREMENT: the adc value is of diminishing.(e.g. rk3288_code_table)
* ADC_INCREMENT: the adc value is incremental.(e.g. rk3368_code_table)
@ -58,6 +58,8 @@ enum adc_sort_mode {
ADC_INCREMENT,
};
#include "thermal_hwmon.h"
/**
* The max sensors is two in rockchip SoCs.
* Two sensors: CPU and GPU sensor.
@ -80,13 +82,14 @@ struct chip_tsadc_table {
/**
* struct rockchip_tsadc_chip - hold the private data of tsadc chip
* @chn_id[SOC_MAX_SENSORS]: the sensor id of chip correspond to the channel
* @chn_id: array of sensor ids of chip corresponding to the channel
* @chn_num: the channel number of tsadc chip
* @tshut_temp: the hardware-controlled shutdown temperature value
* @tshut_mode: the hardware-controlled shutdown mode (0:CRU 1:GPIO)
* @tshut_polarity: the hardware-controlled active polarity (0:LOW 1:HIGH)
* @initialize: SoC special initialize tsadc controller method
* @irq_ack: clear the interrupt
* @control: enable/disable method for the tsadc controller
* @get_temp: get the temperature
* @set_alarm_temp: set the high temperature interrupt
* @set_tshut_temp: set the hardware-controlled shutdown temperature
@ -139,7 +142,7 @@ struct rockchip_thermal_sensor {
* @chip: pointer to the platform/configuration data
* @pdev: platform device of thermal
* @reset: the reset controller of tsadc
* @sensors[SOC_MAX_SENSORS]: the thermal sensor
* @sensors: array of thermal sensors
* @clk: the controller clock is divided by the exteral 24MHz
* @pclk: the advanced peripherals bus clock
* @grf: the general register file will be used to do static set by software
@ -590,6 +593,9 @@ static int rk_tsadcv2_code_to_temp(const struct chip_tsadc_table *table,
/**
* rk_tsadcv2_initialize - initialize TASDC Controller.
* @grf: the general register file will be used to do static set by software
* @regs: the base address of tsadc controller
* @tshut_polarity: the hardware-controlled active polarity (0:LOW 1:HIGH)
*
* (1) Set TSADC_V2_AUTO_PERIOD:
* Configure the interleave between every two accessing of
@ -624,6 +630,9 @@ static void rk_tsadcv2_initialize(struct regmap *grf, void __iomem *regs,
/**
* rk_tsadcv3_initialize - initialize TASDC Controller.
* @grf: the general register file will be used to do static set by software
* @regs: the base address of tsadc controller
* @tshut_polarity: the hardware-controlled active polarity (0:LOW 1:HIGH)
*
* (1) The tsadc control power sequence.
*
@ -723,6 +732,8 @@ static void rk_tsadcv2_control(void __iomem *regs, bool enable)
/**
* rk_tsadcv3_control - the tsadc controller is enabled or disabled.
* @regs: the base address of tsadc controller
* @enable: boolean flag to enable the controller
*
* NOTE: TSADC controller works at auto mode, and some SoCs need set the
* tsadc_q_sel bit on TSADCV2_AUTO_CON[1]. The (1024 - tsadc_q) as output
@ -1206,6 +1217,7 @@ rockchip_thermal_register_sensor(struct platform_device *pdev,
/**
* Reset TSADC Controller, reset all tsadc registers.
* @reset: the reset controller of tsadc
*/
static void rockchip_thermal_reset_controller(struct reset_control *reset)
{
@ -1321,8 +1333,15 @@ static int rockchip_thermal_probe(struct platform_device *pdev)
thermal->chip->control(thermal->regs, true);
for (i = 0; i < thermal->chip->chn_num; i++)
for (i = 0; i < thermal->chip->chn_num; i++) {
rockchip_thermal_toggle_sensor(&thermal->sensors[i], true);
thermal->sensors[i].tzd->tzp->no_hwmon = false;
error = thermal_add_hwmon_sysfs(thermal->sensors[i].tzd);
if (error)
dev_warn(&pdev->dev,
"failed to register sensor %d with hwmon: %d\n",
i, error);
}
platform_set_drvdata(pdev, thermal);
@ -1344,6 +1363,7 @@ static int rockchip_thermal_remove(struct platform_device *pdev)
for (i = 0; i < thermal->chip->chn_num; i++) {
struct rockchip_thermal_sensor *sensor = &thermal->sensors[i];
thermal_remove_hwmon_sysfs(sensor->tzd);
rockchip_thermal_toggle_sensor(sensor, false);
}

View file

@ -5,7 +5,7 @@ config EXYNOS_THERMAL
depends on HAS_IOMEM
help
If you say yes here you get support for the TMU (Thermal Management
Unit) driver for SAMSUNG EXYNOS series of SoCs. This driver initialises
Unit) driver for Samsung Exynos series of SoCs. This driver initialises
the TMU, reports temperature and handles cooling action if defined.
This driver uses the Exynos core thermal APIs and TMU configuration
data from the supported SoCs.

View file

@ -1,6 +1,6 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
* exynos_tmu.c - Samsung Exynos TMU (Thermal Management Unit)
*
* Copyright (C) 2014 Samsung Electronics
* Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
@ -138,7 +138,7 @@ enum soc_type {
/**
* struct exynos_tmu_data : A structure to hold the private data of the TMU
driver
* driver
* @id: identifier of the one instance of the TMU controller.
* @base: base address of the single instance of the TMU controller.
* @base_second: base address of the common registers of the TMU controller.
@ -162,8 +162,11 @@ enum soc_type {
* 0 < reference_voltage <= 31
* @regulator: pointer to the TMU regulator structure.
* @reg_conf: pointer to structure to register with core thermal.
* @tzd: pointer to thermal_zone_device structure
* @ntrip: number of supported trip points.
* @enabled: current status of TMU device
* @tmu_set_trip_temp: SoC specific method to set trip (rising threshold)
* @tmu_set_trip_hyst: SoC specific to set hysteresis (falling threshold)
* @tmu_initialize: SoC specific TMU initialization method
* @tmu_control: SoC specific TMU control method
* @tmu_read: SoC specific TMU temperature read method
@ -1183,7 +1186,7 @@ static struct platform_driver exynos_tmu_driver = {
module_platform_driver(exynos_tmu_driver);
MODULE_DESCRIPTION("EXYNOS TMU Driver");
MODULE_DESCRIPTION("Exynos TMU Driver");
MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:exynos-tmu");

View file

@ -30,7 +30,7 @@
#define DTS_DR_OFFSET 0x1C
#define DTS_SR_OFFSET 0x20
#define DTS_ITENR_OFFSET 0x24
#define DTS_CIFR_OFFSET 0x28
#define DTS_ICIFR_OFFSET 0x28
/* DTS_CFGR1 register mask definitions */
#define HSREF_CLK_DIV_MASK GENMASK(30, 24)
@ -51,10 +51,16 @@
/* DTS_DR register mask definitions */
#define TS1_MFREQ_MASK GENMASK(15, 0)
/* DTS_ITENR register mask definitions */
#define ITENR_MASK (GENMASK(2, 0) | GENMASK(6, 4))
/* DTS_ICIFR register mask definitions */
#define ICIFR_MASK (GENMASK(2, 0) | GENMASK(6, 4))
/* Less significant bit position definitions */
#define TS1_T0_POS 16
#define TS1_SMP_TIME_POS 16
#define TS1_HITTHD_POS 16
#define TS1_LITTHD_POS 0
#define HSREF_CLK_DIV_POS 24
/* DTS_CFGR1 bit definitions */
@ -76,59 +82,60 @@
#define ONE_MHZ 1000000
#define POLL_TIMEOUT 5000
#define STARTUP_TIME 40
#define TS1_T0_VAL0 30
#define TS1_T0_VAL1 130
#define TS1_T0_VAL0 30000 /* 30 celsius */
#define TS1_T0_VAL1 130000 /* 130 celsius */
#define NO_HW_TRIG 0
/* The Thermal Framework expects millidegrees */
#define mcelsius(temp) ((temp) * 1000)
/* The Sensor expects oC degrees */
#define celsius(temp) ((temp) / 1000)
#define SAMPLING_TIME 15
struct stm_thermal_sensor {
struct device *dev;
struct thermal_zone_device *th_dev;
enum thermal_device_mode mode;
struct clk *clk;
int high_temp;
int low_temp;
int temp_critical;
int temp_passive;
unsigned int low_temp_enabled;
int num_trips;
unsigned int high_temp_enabled;
int irq;
unsigned int irq_enabled;
void __iomem *base;
int t0, fmt0, ramp_coeff;
};
static irqreturn_t stm_thermal_alarm_irq(int irq, void *sdata)
{
struct stm_thermal_sensor *sensor = sdata;
disable_irq_nosync(irq);
sensor->irq_enabled = false;
return IRQ_WAKE_THREAD;
}
static irqreturn_t stm_thermal_alarm_irq_thread(int irq, void *sdata)
static int stm_enable_irq(struct stm_thermal_sensor *sensor)
{
u32 value;
dev_dbg(sensor->dev, "low:%d high:%d\n", sensor->low_temp_enabled,
sensor->high_temp_enabled);
/* Disable IT generation for low and high thresholds */
value = readl_relaxed(sensor->base + DTS_ITENR_OFFSET);
value &= ~(LOW_THRESHOLD | HIGH_THRESHOLD);
if (sensor->low_temp_enabled)
value |= HIGH_THRESHOLD;
if (sensor->high_temp_enabled)
value |= LOW_THRESHOLD;
/* Enable interrupts */
writel_relaxed(value, sensor->base + DTS_ITENR_OFFSET);
return 0;
}
static irqreturn_t stm_thermal_irq_handler(int irq, void *sdata)
{
struct stm_thermal_sensor *sensor = sdata;
/* read IT reason in SR and clear flags */
value = readl_relaxed(sensor->base + DTS_SR_OFFSET);
if ((value & LOW_THRESHOLD) == LOW_THRESHOLD)
writel_relaxed(LOW_THRESHOLD, sensor->base + DTS_CIFR_OFFSET);
if ((value & HIGH_THRESHOLD) == HIGH_THRESHOLD)
writel_relaxed(HIGH_THRESHOLD, sensor->base + DTS_CIFR_OFFSET);
dev_dbg(sensor->dev, "sr:%d\n",
readl_relaxed(sensor->base + DTS_SR_OFFSET));
thermal_zone_device_update(sensor->th_dev, THERMAL_EVENT_UNSPECIFIED);
stm_enable_irq(sensor);
/* Acknoledge all DTS irqs */
writel_relaxed(ICIFR_MASK, sensor->base + DTS_ICIFR_OFFSET);
return IRQ_HANDLED;
}
@ -160,6 +167,8 @@ static int stm_sensor_power_on(struct stm_thermal_sensor *sensor)
writel_relaxed(value, sensor->base +
DTS_CFGR1_OFFSET);
sensor->mode = THERMAL_DEVICE_ENABLED;
return 0;
}
@ -167,6 +176,8 @@ static int stm_sensor_power_off(struct stm_thermal_sensor *sensor)
{
u32 value;
sensor->mode = THERMAL_DEVICE_DISABLED;
/* Stop measuring */
value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET);
value &= ~TS1_START;
@ -263,60 +274,17 @@ static int stm_thermal_calculate_threshold(struct stm_thermal_sensor *sensor,
int temp, u32 *th)
{
int freqM;
u32 sampling_time;
/* Retrieve the number of periods to sample */
sampling_time = (readl_relaxed(sensor->base + DTS_CFGR1_OFFSET) &
TS1_SMP_TIME_MASK) >> TS1_SMP_TIME_POS;
/* Figure out the CLK_PTAT frequency for a given temperature */
freqM = ((temp - sensor->t0) * sensor->ramp_coeff)
+ sensor->fmt0;
dev_dbg(sensor->dev, "%s: freqM for threshold = %d Hz",
__func__, freqM);
freqM = ((temp - sensor->t0) * sensor->ramp_coeff) / 1000 +
sensor->fmt0;
/* Figure out the threshold sample number */
*th = clk_get_rate(sensor->clk);
*th = clk_get_rate(sensor->clk) * SAMPLING_TIME / freqM;
if (!*th)
return -EINVAL;
*th = *th / freqM;
*th *= sampling_time;
return 0;
}
static int stm_thermal_set_threshold(struct stm_thermal_sensor *sensor)
{
u32 value, th;
int ret;
value = readl_relaxed(sensor->base + DTS_ITR1_OFFSET);
/* Erase threshold content */
value &= ~(TS1_LITTHD_MASK | TS1_HITTHD_MASK);
/* Retrieve the sample threshold number th for a given temperature */
ret = stm_thermal_calculate_threshold(sensor, sensor->high_temp, &th);
if (ret)
return ret;
value |= th & TS1_LITTHD_MASK;
if (sensor->low_temp_enabled) {
/* Retrieve the sample threshold */
ret = stm_thermal_calculate_threshold(sensor, sensor->low_temp,
&th);
if (ret)
return ret;
value |= (TS1_HITTHD_MASK & (th << TS1_HITTHD_POS));
}
/* Write value on the Low interrupt threshold */
writel_relaxed(value, sensor->base + DTS_ITR1_OFFSET);
dev_dbg(sensor->dev, "freqM=%d Hz, threshold=0x%x", freqM, *th);
return 0;
}
@ -326,77 +294,57 @@ static int stm_disable_irq(struct stm_thermal_sensor *sensor)
{
u32 value;
/* Disable IT generation for low and high thresholds */
/* Disable IT generation */
value = readl_relaxed(sensor->base + DTS_ITENR_OFFSET);
writel_relaxed(value & ~(LOW_THRESHOLD | HIGH_THRESHOLD),
sensor->base + DTS_ITENR_OFFSET);
dev_dbg(sensor->dev, "%s: IT disabled on sensor side", __func__);
return 0;
}
/* Enable temperature interrupt */
static int stm_enable_irq(struct stm_thermal_sensor *sensor)
{
u32 value;
/*
* Code below enables High temperature threshold using a low threshold
* sampling value
*/
/* Make sure LOW_THRESHOLD IT is clear before enabling */
writel_relaxed(LOW_THRESHOLD, sensor->base + DTS_CIFR_OFFSET);
/* Enable IT generation for low threshold */
value = readl_relaxed(sensor->base + DTS_ITENR_OFFSET);
value |= LOW_THRESHOLD;
/* Enable the low temperature threshold if needed */
if (sensor->low_temp_enabled) {
/* Make sure HIGH_THRESHOLD IT is clear before enabling */
writel_relaxed(HIGH_THRESHOLD, sensor->base + DTS_CIFR_OFFSET);
/* Enable IT generation for high threshold */
value |= HIGH_THRESHOLD;
}
/* Enable thresholds */
value &= ~ITENR_MASK;
writel_relaxed(value, sensor->base + DTS_ITENR_OFFSET);
dev_dbg(sensor->dev, "%s: IT enabled on sensor side", __func__);
return 0;
}
static int stm_thermal_update_threshold(struct stm_thermal_sensor *sensor)
static int stm_thermal_set_trips(void *data, int low, int high)
{
struct stm_thermal_sensor *sensor = data;
u32 itr1, th;
int ret;
sensor->mode = THERMAL_DEVICE_DISABLED;
dev_dbg(sensor->dev, "set trips %d <--> %d\n", low, high);
ret = stm_sensor_power_off(sensor);
if (ret)
return ret;
/* Erase threshold content */
itr1 = readl_relaxed(sensor->base + DTS_ITR1_OFFSET);
itr1 &= ~(TS1_LITTHD_MASK | TS1_HITTHD_MASK);
ret = stm_disable_irq(sensor);
if (ret)
return ret;
/*
* Disable low-temp if "low" is too small. As per thermal framework
* API, we use -INT_MAX rather than INT_MIN.
*/
ret = stm_thermal_set_threshold(sensor);
if (ret)
return ret;
if (low > -INT_MAX) {
sensor->low_temp_enabled = 1;
/* add 0.5 of hysteresis due to measurement error */
ret = stm_thermal_calculate_threshold(sensor, low - 500, &th);
if (ret)
return ret;
ret = stm_enable_irq(sensor);
if (ret)
return ret;
itr1 |= (TS1_HITTHD_MASK & (th << TS1_HITTHD_POS));
} else {
sensor->low_temp_enabled = 0;
}
ret = stm_sensor_power_on(sensor);
if (ret)
return ret;
/* Disable high-temp if "high" is too big. */
if (high < INT_MAX) {
sensor->high_temp_enabled = 1;
ret = stm_thermal_calculate_threshold(sensor, high, &th);
if (ret)
return ret;
sensor->mode = THERMAL_DEVICE_ENABLED;
itr1 |= (TS1_LITTHD_MASK & (th << TS1_LITTHD_POS));
} else {
sensor->high_temp_enabled = 0;
}
/* Write new threshod values*/
writel_relaxed(itr1, sensor->base + DTS_ITR1_OFFSET);
return 0;
}
@ -405,76 +353,26 @@ static int stm_thermal_update_threshold(struct stm_thermal_sensor *sensor)
static int stm_thermal_get_temp(void *data, int *temp)
{
struct stm_thermal_sensor *sensor = data;
u32 sampling_time;
u32 periods;
int freqM, ret;
if (sensor->mode != THERMAL_DEVICE_ENABLED)
return -EAGAIN;
/* Retrieve the number of samples */
ret = readl_poll_timeout(sensor->base + DTS_DR_OFFSET, freqM,
(freqM & TS1_MFREQ_MASK), STARTUP_TIME,
POLL_TIMEOUT);
/* Retrieve the number of periods sampled */
ret = readl_relaxed_poll_timeout(sensor->base + DTS_DR_OFFSET, periods,
(periods & TS1_MFREQ_MASK),
STARTUP_TIME, POLL_TIMEOUT);
if (ret)
return ret;
if (!freqM)
return -ENODATA;
/* Retrieve the number of periods sampled */
sampling_time = (readl_relaxed(sensor->base + DTS_CFGR1_OFFSET) &
TS1_SMP_TIME_MASK) >> TS1_SMP_TIME_POS;
/* Figure out the number of samples per period */
freqM /= sampling_time;
/* Figure out the CLK_PTAT frequency */
freqM = clk_get_rate(sensor->clk) / freqM;
freqM = (clk_get_rate(sensor->clk) * SAMPLING_TIME) / periods;
if (!freqM)
return -EINVAL;
dev_dbg(sensor->dev, "%s: freqM=%d\n", __func__, freqM);
/* Figure out the temperature in mili celsius */
*temp = mcelsius(sensor->t0 + ((freqM - sensor->fmt0) /
sensor->ramp_coeff));
dev_dbg(sensor->dev, "%s: temperature = %d millicelsius",
__func__, *temp);
/* Update thresholds */
if (sensor->num_trips > 1) {
/* Update alarm threshold value to next higher trip point */
if (sensor->high_temp == sensor->temp_passive &&
celsius(*temp) >= sensor->temp_passive) {
sensor->high_temp = sensor->temp_critical;
sensor->low_temp = sensor->temp_passive;
sensor->low_temp_enabled = true;
ret = stm_thermal_update_threshold(sensor);
if (ret)
return ret;
}
if (sensor->high_temp == sensor->temp_critical &&
celsius(*temp) < sensor->temp_passive) {
sensor->high_temp = sensor->temp_passive;
sensor->low_temp_enabled = false;
ret = stm_thermal_update_threshold(sensor);
if (ret)
return ret;
}
/*
* Re-enable alarm IRQ if temperature below critical
* temperature
*/
if (!sensor->irq_enabled &&
(celsius(*temp) < sensor->temp_critical)) {
sensor->irq_enabled = true;
enable_irq(sensor->irq);
}
}
*temp = (freqM - sensor->fmt0) * 1000 / sensor->ramp_coeff + sensor->t0;
return 0;
}
@ -493,8 +391,8 @@ static int stm_register_irq(struct stm_thermal_sensor *sensor)
}
ret = devm_request_threaded_irq(dev, sensor->irq,
stm_thermal_alarm_irq,
stm_thermal_alarm_irq_thread,
NULL,
stm_thermal_irq_handler,
IRQF_ONESHOT,
dev->driver->name, sensor);
if (ret) {
@ -503,8 +401,6 @@ static int stm_register_irq(struct stm_thermal_sensor *sensor)
return ret;
}
sensor->irq_enabled = true;
dev_dbg(dev, "%s: thermal IRQ registered", __func__);
return 0;
@ -514,6 +410,8 @@ static int stm_thermal_sensor_off(struct stm_thermal_sensor *sensor)
{
int ret;
stm_disable_irq(sensor);
ret = stm_sensor_power_off(sensor);
if (ret)
return ret;
@ -526,7 +424,6 @@ static int stm_thermal_sensor_off(struct stm_thermal_sensor *sensor)
static int stm_thermal_prepare(struct stm_thermal_sensor *sensor)
{
int ret;
struct device *dev = sensor->dev;
ret = clk_prepare_enable(sensor->clk);
if (ret)
@ -540,26 +437,8 @@ static int stm_thermal_prepare(struct stm_thermal_sensor *sensor)
if (ret)
goto thermal_unprepare;
/* Set threshold(s) for IRQ */
ret = stm_thermal_set_threshold(sensor);
if (ret)
goto thermal_unprepare;
ret = stm_enable_irq(sensor);
if (ret)
goto thermal_unprepare;
ret = stm_sensor_power_on(sensor);
if (ret) {
dev_err(dev, "%s: failed to power on sensor\n", __func__);
goto irq_disable;
}
return 0;
irq_disable:
stm_disable_irq(sensor);
thermal_unprepare:
clk_disable_unprepare(sensor->clk);
@ -576,8 +455,6 @@ static int stm_thermal_suspend(struct device *dev)
if (ret)
return ret;
sensor->mode = THERMAL_DEVICE_DISABLED;
return 0;
}
@ -590,7 +467,12 @@ static int stm_thermal_resume(struct device *dev)
if (ret)
return ret;
sensor->mode = THERMAL_DEVICE_ENABLED;
ret = stm_sensor_power_on(sensor);
if (ret)
return ret;
thermal_zone_device_update(sensor->th_dev, THERMAL_EVENT_UNSPECIFIED);
stm_enable_irq(sensor);
return 0;
}
@ -600,6 +482,7 @@ SIMPLE_DEV_PM_OPS(stm_thermal_pm_ops, stm_thermal_suspend, stm_thermal_resume);
static const struct thermal_zone_of_device_ops stm_tz_ops = {
.get_temp = stm_thermal_get_temp,
.set_trips = stm_thermal_set_trips,
};
static const struct of_device_id stm_thermal_of_match[] = {
@ -612,9 +495,8 @@ static int stm_thermal_probe(struct platform_device *pdev)
{
struct stm_thermal_sensor *sensor;
struct resource *res;
const struct thermal_trip *trip;
void __iomem *base;
int ret, i;
int ret;
if (!pdev->dev.of_node) {
dev_err(&pdev->dev, "%s: device tree node not found\n",
@ -645,10 +527,23 @@ static int stm_thermal_probe(struct platform_device *pdev)
return PTR_ERR(sensor->clk);
}
/* Register IRQ into GIC */
ret = stm_register_irq(sensor);
if (ret)
stm_disable_irq(sensor);
/* Clear irq flags */
writel_relaxed(ICIFR_MASK, sensor->base + DTS_ICIFR_OFFSET);
/* Configure and enable HW sensor */
ret = stm_thermal_prepare(sensor);
if (ret) {
dev_err(&pdev->dev, "Error preprare sensor: %d\n", ret);
return ret;
}
ret = stm_sensor_power_on(sensor);
if (ret) {
dev_err(&pdev->dev, "Error power on sensor: %d\n", ret);
return ret;
}
sensor->th_dev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0,
sensor,
@ -661,53 +556,12 @@ static int stm_thermal_probe(struct platform_device *pdev)
return ret;
}
if (!sensor->th_dev->ops->get_crit_temp) {
/* Critical point must be provided */
ret = -EINVAL;
/* Register IRQ into GIC */
ret = stm_register_irq(sensor);
if (ret)
goto err_tz;
}
ret = sensor->th_dev->ops->get_crit_temp(sensor->th_dev,
&sensor->temp_critical);
if (ret) {
dev_err(&pdev->dev,
"Not able to read critical_temp: %d\n", ret);
goto err_tz;
}
sensor->temp_critical = celsius(sensor->temp_critical);
/* Set thresholds for IRQ */
sensor->high_temp = sensor->temp_critical;
trip = of_thermal_get_trip_points(sensor->th_dev);
sensor->num_trips = of_thermal_get_ntrips(sensor->th_dev);
/* Find out passive temperature if it exists */
for (i = (sensor->num_trips - 1); i >= 0; i--) {
if (trip[i].type == THERMAL_TRIP_PASSIVE) {
sensor->temp_passive = celsius(trip[i].temperature);
/* Update high temperature threshold */
sensor->high_temp = sensor->temp_passive;
}
}
/*
* Ensure low_temp_enabled flag is disabled.
* By disabling low_temp_enabled, low threshold IT will not be
* configured neither enabled because it is not needed as high
* threshold is set on the lowest temperature trip point after
* probe.
*/
sensor->low_temp_enabled = false;
/* Configure and enable HW sensor */
ret = stm_thermal_prepare(sensor);
if (ret) {
dev_err(&pdev->dev,
"Not able to enable sensor: %d\n", ret);
goto err_tz;
}
stm_enable_irq(sensor);
/*
* Thermal_zone doesn't enable hwmon as default,
@ -718,8 +572,6 @@ static int stm_thermal_probe(struct platform_device *pdev)
if (ret)
goto err_tz;
sensor->mode = THERMAL_DEVICE_ENABLED;
dev_info(&pdev->dev, "%s: Driver initialized successfully\n",
__func__);

View file

@ -174,8 +174,8 @@ static void thermal_zone_trip_update(struct thermal_zone_device *tz, int trip)
/**
* step_wise_throttle - throttles devices associated with the given zone
* @tz - thermal_zone_device
* @trip - trip point index
* @tz: thermal_zone_device
* @trip: trip point index
*
* Throttling Logic: This uses the trend of the thermal zone to throttle.
* If the thermal zone is 'heating up' this throttles all the cooling

View file

@ -0,0 +1,639 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Thermal sensor driver for Allwinner SOC
* Copyright (C) 2019 Yangtao Li
*
* Based on the work of Icenowy Zheng <icenowy@aosc.io>
* Based on the work of Ondrej Jirman <megous@megous.com>
* Based on the work of Josef Gajdusek <atx@atx.name>
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#include "thermal_hwmon.h"
#define MAX_SENSOR_NUM 4
#define FT_TEMP_MASK GENMASK(11, 0)
#define TEMP_CALIB_MASK GENMASK(11, 0)
#define CALIBRATE_DEFAULT 0x800
#define SUN8I_THS_CTRL0 0x00
#define SUN8I_THS_CTRL2 0x40
#define SUN8I_THS_IC 0x44
#define SUN8I_THS_IS 0x48
#define SUN8I_THS_MFC 0x70
#define SUN8I_THS_TEMP_CALIB 0x74
#define SUN8I_THS_TEMP_DATA 0x80
#define SUN50I_THS_CTRL0 0x00
#define SUN50I_H6_THS_ENABLE 0x04
#define SUN50I_H6_THS_PC 0x08
#define SUN50I_H6_THS_DIC 0x10
#define SUN50I_H6_THS_DIS 0x20
#define SUN50I_H6_THS_MFC 0x30
#define SUN50I_H6_THS_TEMP_CALIB 0xa0
#define SUN50I_H6_THS_TEMP_DATA 0xc0
#define SUN8I_THS_CTRL0_T_ACQ0(x) (GENMASK(15, 0) & (x))
#define SUN8I_THS_CTRL2_T_ACQ1(x) ((GENMASK(15, 0) & (x)) << 16)
#define SUN8I_THS_DATA_IRQ_STS(x) BIT(x + 8)
#define SUN50I_THS_CTRL0_T_ACQ(x) ((GENMASK(15, 0) & (x)) << 16)
#define SUN50I_THS_FILTER_EN BIT(2)
#define SUN50I_THS_FILTER_TYPE(x) (GENMASK(1, 0) & (x))
#define SUN50I_H6_THS_PC_TEMP_PERIOD(x) ((GENMASK(19, 0) & (x)) << 12)
#define SUN50I_H6_THS_DATA_IRQ_STS(x) BIT(x)
/* millidegree celsius */
struct tsensor {
struct ths_device *tmdev;
struct thermal_zone_device *tzd;
int id;
};
struct ths_thermal_chip {
bool has_mod_clk;
bool has_bus_clk_reset;
int sensor_num;
int offset;
int scale;
int ft_deviation;
int temp_data_base;
int (*calibrate)(struct ths_device *tmdev,
u16 *caldata, int callen);
int (*init)(struct ths_device *tmdev);
int (*irq_ack)(struct ths_device *tmdev);
int (*calc_temp)(struct ths_device *tmdev,
int id, int reg);
};
struct ths_device {
const struct ths_thermal_chip *chip;
struct device *dev;
struct regmap *regmap;
struct reset_control *reset;
struct clk *bus_clk;
struct clk *mod_clk;
struct tsensor sensor[MAX_SENSOR_NUM];
};
/* Temp Unit: millidegree Celsius */
static int sun8i_ths_calc_temp(struct ths_device *tmdev,
int id, int reg)
{
return tmdev->chip->offset - (reg * tmdev->chip->scale / 10);
}
static int sun50i_h5_calc_temp(struct ths_device *tmdev,
int id, int reg)
{
if (reg >= 0x500)
return -1191 * reg / 10 + 223000;
else if (!id)
return -1452 * reg / 10 + 259000;
else
return -1590 * reg / 10 + 276000;
}
static int sun8i_ths_get_temp(void *data, int *temp)
{
struct tsensor *s = data;
struct ths_device *tmdev = s->tmdev;
int val = 0;
regmap_read(tmdev->regmap, tmdev->chip->temp_data_base +
0x4 * s->id, &val);
/* ths have no data yet */
if (!val)
return -EAGAIN;
*temp = tmdev->chip->calc_temp(tmdev, s->id, val);
/*
* According to the original sdk, there are some platforms(rarely)
* that add a fixed offset value after calculating the temperature
* value. We can't simply put it on the formula for calculating the
* temperature above, because the formula for calculating the
* temperature above is also used when the sensor is calibrated. If
* do this, the correct calibration formula is hard to know.
*/
*temp += tmdev->chip->ft_deviation;
return 0;
}
static const struct thermal_zone_of_device_ops ths_ops = {
.get_temp = sun8i_ths_get_temp,
};
static const struct regmap_config config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.fast_io = true,
.max_register = 0xfc,
};
static int sun8i_h3_irq_ack(struct ths_device *tmdev)
{
int i, state, ret = 0;
regmap_read(tmdev->regmap, SUN8I_THS_IS, &state);
for (i = 0; i < tmdev->chip->sensor_num; i++) {
if (state & SUN8I_THS_DATA_IRQ_STS(i)) {
regmap_write(tmdev->regmap, SUN8I_THS_IS,
SUN8I_THS_DATA_IRQ_STS(i));
ret |= BIT(i);
}
}
return ret;
}
static int sun50i_h6_irq_ack(struct ths_device *tmdev)
{
int i, state, ret = 0;
regmap_read(tmdev->regmap, SUN50I_H6_THS_DIS, &state);
for (i = 0; i < tmdev->chip->sensor_num; i++) {
if (state & SUN50I_H6_THS_DATA_IRQ_STS(i)) {
regmap_write(tmdev->regmap, SUN50I_H6_THS_DIS,
SUN50I_H6_THS_DATA_IRQ_STS(i));
ret |= BIT(i);
}
}
return ret;
}
static irqreturn_t sun8i_irq_thread(int irq, void *data)
{
struct ths_device *tmdev = data;
int i, state;
state = tmdev->chip->irq_ack(tmdev);
for (i = 0; i < tmdev->chip->sensor_num; i++) {
if (state & BIT(i))
thermal_zone_device_update(tmdev->sensor[i].tzd,
THERMAL_EVENT_UNSPECIFIED);
}
return IRQ_HANDLED;
}
static int sun8i_h3_ths_calibrate(struct ths_device *tmdev,
u16 *caldata, int callen)
{
int i;
if (!caldata[0] || callen < 2 * tmdev->chip->sensor_num)
return -EINVAL;
for (i = 0; i < tmdev->chip->sensor_num; i++) {
int offset = (i % 2) << 4;
regmap_update_bits(tmdev->regmap,
SUN8I_THS_TEMP_CALIB + (4 * (i >> 1)),
0xfff << offset,
caldata[i] << offset);
}
return 0;
}
static int sun50i_h6_ths_calibrate(struct ths_device *tmdev,
u16 *caldata, int callen)
{
struct device *dev = tmdev->dev;
int i, ft_temp;
if (!caldata[0] || callen < 2 + 2 * tmdev->chip->sensor_num)
return -EINVAL;
/*
* efuse layout:
*
* 0 11 16 32
* +-------+-------+-------+
* |temp| |sensor0|sensor1|
* +-------+-------+-------+
*
* The calibration data on the H6 is the ambient temperature and
* sensor values that are filled during the factory test stage.
*
* The unit of stored FT temperature is 0.1 degreee celusis.
*
* We need to calculate a delta between measured and caluclated
* register values and this will become a calibration offset.
*/
ft_temp = (caldata[0] & FT_TEMP_MASK) * 100;
for (i = 0; i < tmdev->chip->sensor_num; i++) {
int sensor_reg = caldata[i + 1];
int cdata, offset;
int sensor_temp = tmdev->chip->calc_temp(tmdev, i, sensor_reg);
/*
* Calibration data is CALIBRATE_DEFAULT - (calculated
* temperature from sensor reading at factory temperature
* minus actual factory temperature) * 14.88 (scale from
* temperature to register values)
*/
cdata = CALIBRATE_DEFAULT -
((sensor_temp - ft_temp) * 10 / tmdev->chip->scale);
if (cdata & ~TEMP_CALIB_MASK) {
/*
* Calibration value more than 12-bit, but calibration
* register is 12-bit. In this case, ths hardware can
* still work without calibration, although the data
* won't be so accurate.
*/
dev_warn(dev, "sensor%d is not calibrated.\n", i);
continue;
}
offset = (i % 2) * 16;
regmap_update_bits(tmdev->regmap,
SUN50I_H6_THS_TEMP_CALIB + (i / 2 * 4),
0xfff << offset,
cdata << offset);
}
return 0;
}
static int sun8i_ths_calibrate(struct ths_device *tmdev)
{
struct nvmem_cell *calcell;
struct device *dev = tmdev->dev;
u16 *caldata;
size_t callen;
int ret = 0;
calcell = devm_nvmem_cell_get(dev, "calibration");
if (IS_ERR(calcell)) {
if (PTR_ERR(calcell) == -EPROBE_DEFER)
return -EPROBE_DEFER;
/*
* Even if the external calibration data stored in sid is
* not accessible, the THS hardware can still work, although
* the data won't be so accurate.
*
* The default value of calibration register is 0x800 for
* every sensor, and the calibration value is usually 0x7xx
* or 0x8xx, so they won't be away from the default value
* for a lot.
*
* So here we do not return error if the calibartion data is
* not available, except the probe needs deferring.
*/
goto out;
}
caldata = nvmem_cell_read(calcell, &callen);
if (IS_ERR(caldata)) {
ret = PTR_ERR(caldata);
goto out;
}
tmdev->chip->calibrate(tmdev, caldata, callen);
kfree(caldata);
out:
return ret;
}
static int sun8i_ths_resource_init(struct ths_device *tmdev)
{
struct device *dev = tmdev->dev;
struct platform_device *pdev = to_platform_device(dev);
void __iomem *base;
int ret;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
tmdev->regmap = devm_regmap_init_mmio(dev, base, &config);
if (IS_ERR(tmdev->regmap))
return PTR_ERR(tmdev->regmap);
if (tmdev->chip->has_bus_clk_reset) {
tmdev->reset = devm_reset_control_get(dev, NULL);
if (IS_ERR(tmdev->reset))
return PTR_ERR(tmdev->reset);
tmdev->bus_clk = devm_clk_get(&pdev->dev, "bus");
if (IS_ERR(tmdev->bus_clk))
return PTR_ERR(tmdev->bus_clk);
}
if (tmdev->chip->has_mod_clk) {
tmdev->mod_clk = devm_clk_get(&pdev->dev, "mod");
if (IS_ERR(tmdev->mod_clk))
return PTR_ERR(tmdev->mod_clk);
}
ret = reset_control_deassert(tmdev->reset);
if (ret)
return ret;
ret = clk_prepare_enable(tmdev->bus_clk);
if (ret)
goto assert_reset;
ret = clk_set_rate(tmdev->mod_clk, 24000000);
if (ret)
goto bus_disable;
ret = clk_prepare_enable(tmdev->mod_clk);
if (ret)
goto bus_disable;
ret = sun8i_ths_calibrate(tmdev);
if (ret)
goto mod_disable;
return 0;
mod_disable:
clk_disable_unprepare(tmdev->mod_clk);
bus_disable:
clk_disable_unprepare(tmdev->bus_clk);
assert_reset:
reset_control_assert(tmdev->reset);
return ret;
}
static int sun8i_h3_thermal_init(struct ths_device *tmdev)
{
int val;
/* average over 4 samples */
regmap_write(tmdev->regmap, SUN8I_THS_MFC,
SUN50I_THS_FILTER_EN |
SUN50I_THS_FILTER_TYPE(1));
/*
* clkin = 24MHz
* filter_samples = 4
* period = 0.25s
*
* x = period * clkin / 4096 / filter_samples - 1
* = 365
*/
val = GENMASK(7 + tmdev->chip->sensor_num, 8);
regmap_write(tmdev->regmap, SUN8I_THS_IC,
SUN50I_H6_THS_PC_TEMP_PERIOD(365) | val);
/*
* T_acq = 20us
* clkin = 24MHz
*
* x = T_acq * clkin - 1
* = 479
*/
regmap_write(tmdev->regmap, SUN8I_THS_CTRL0,
SUN8I_THS_CTRL0_T_ACQ0(479));
val = GENMASK(tmdev->chip->sensor_num - 1, 0);
regmap_write(tmdev->regmap, SUN8I_THS_CTRL2,
SUN8I_THS_CTRL2_T_ACQ1(479) | val);
return 0;
}
/*
* Without this undocummented value, the returned temperatures would
* be higher than real ones by about 20C.
*/
#define SUN50I_H6_CTRL0_UNK 0x0000002f
static int sun50i_h6_thermal_init(struct ths_device *tmdev)
{
int val;
/*
* T_acq = 20us
* clkin = 24MHz
*
* x = T_acq * clkin - 1
* = 479
*/
regmap_write(tmdev->regmap, SUN50I_THS_CTRL0,
SUN50I_H6_CTRL0_UNK | SUN50I_THS_CTRL0_T_ACQ(479));
/* average over 4 samples */
regmap_write(tmdev->regmap, SUN50I_H6_THS_MFC,
SUN50I_THS_FILTER_EN |
SUN50I_THS_FILTER_TYPE(1));
/*
* clkin = 24MHz
* filter_samples = 4
* period = 0.25s
*
* x = period * clkin / 4096 / filter_samples - 1
* = 365
*/
regmap_write(tmdev->regmap, SUN50I_H6_THS_PC,
SUN50I_H6_THS_PC_TEMP_PERIOD(365));
/* enable sensor */
val = GENMASK(tmdev->chip->sensor_num - 1, 0);
regmap_write(tmdev->regmap, SUN50I_H6_THS_ENABLE, val);
/* thermal data interrupt enable */
val = GENMASK(tmdev->chip->sensor_num - 1, 0);
regmap_write(tmdev->regmap, SUN50I_H6_THS_DIC, val);
return 0;
}
static int sun8i_ths_register(struct ths_device *tmdev)
{
int i;
for (i = 0; i < tmdev->chip->sensor_num; i++) {
tmdev->sensor[i].tmdev = tmdev;
tmdev->sensor[i].id = i;
tmdev->sensor[i].tzd =
devm_thermal_zone_of_sensor_register(tmdev->dev,
i,
&tmdev->sensor[i],
&ths_ops);
if (IS_ERR(tmdev->sensor[i].tzd))
return PTR_ERR(tmdev->sensor[i].tzd);
if (devm_thermal_add_hwmon_sysfs(tmdev->sensor[i].tzd))
dev_warn(tmdev->dev,
"Failed to add hwmon sysfs attributes\n");
}
return 0;
}
static int sun8i_ths_probe(struct platform_device *pdev)
{
struct ths_device *tmdev;
struct device *dev = &pdev->dev;
int ret, irq;
tmdev = devm_kzalloc(dev, sizeof(*tmdev), GFP_KERNEL);
if (!tmdev)
return -ENOMEM;
tmdev->dev = dev;
tmdev->chip = of_device_get_match_data(&pdev->dev);
if (!tmdev->chip)
return -EINVAL;
platform_set_drvdata(pdev, tmdev);
ret = sun8i_ths_resource_init(tmdev);
if (ret)
return ret;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = tmdev->chip->init(tmdev);
if (ret)
return ret;
ret = sun8i_ths_register(tmdev);
if (ret)
return ret;
/*
* Avoid entering the interrupt handler, the thermal device is not
* registered yet, we deffer the registration of the interrupt to
* the end.
*/
ret = devm_request_threaded_irq(dev, irq, NULL,
sun8i_irq_thread,
IRQF_ONESHOT, "ths", tmdev);
if (ret)
return ret;
return 0;
}
static int sun8i_ths_remove(struct platform_device *pdev)
{
struct ths_device *tmdev = platform_get_drvdata(pdev);
clk_disable_unprepare(tmdev->mod_clk);
clk_disable_unprepare(tmdev->bus_clk);
reset_control_assert(tmdev->reset);
return 0;
}
static const struct ths_thermal_chip sun8i_a83t_ths = {
.sensor_num = 3,
.scale = 705,
.offset = 191668,
.temp_data_base = SUN8I_THS_TEMP_DATA,
.calibrate = sun8i_h3_ths_calibrate,
.init = sun8i_h3_thermal_init,
.irq_ack = sun8i_h3_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct ths_thermal_chip sun8i_h3_ths = {
.sensor_num = 1,
.scale = 1211,
.offset = 217000,
.has_mod_clk = true,
.has_bus_clk_reset = true,
.temp_data_base = SUN8I_THS_TEMP_DATA,
.calibrate = sun8i_h3_ths_calibrate,
.init = sun8i_h3_thermal_init,
.irq_ack = sun8i_h3_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct ths_thermal_chip sun8i_r40_ths = {
.sensor_num = 2,
.offset = 251086,
.scale = 1130,
.has_mod_clk = true,
.has_bus_clk_reset = true,
.temp_data_base = SUN8I_THS_TEMP_DATA,
.calibrate = sun8i_h3_ths_calibrate,
.init = sun8i_h3_thermal_init,
.irq_ack = sun8i_h3_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct ths_thermal_chip sun50i_a64_ths = {
.sensor_num = 3,
.offset = 260890,
.scale = 1170,
.has_mod_clk = true,
.has_bus_clk_reset = true,
.temp_data_base = SUN8I_THS_TEMP_DATA,
.calibrate = sun8i_h3_ths_calibrate,
.init = sun8i_h3_thermal_init,
.irq_ack = sun8i_h3_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct ths_thermal_chip sun50i_h5_ths = {
.sensor_num = 2,
.has_mod_clk = true,
.has_bus_clk_reset = true,
.temp_data_base = SUN8I_THS_TEMP_DATA,
.calibrate = sun8i_h3_ths_calibrate,
.init = sun8i_h3_thermal_init,
.irq_ack = sun8i_h3_irq_ack,
.calc_temp = sun50i_h5_calc_temp,
};
static const struct ths_thermal_chip sun50i_h6_ths = {
.sensor_num = 2,
.has_bus_clk_reset = true,
.ft_deviation = 7000,
.offset = 187744,
.scale = 672,
.temp_data_base = SUN50I_H6_THS_TEMP_DATA,
.calibrate = sun50i_h6_ths_calibrate,
.init = sun50i_h6_thermal_init,
.irq_ack = sun50i_h6_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct of_device_id of_ths_match[] = {
{ .compatible = "allwinner,sun8i-a83t-ths", .data = &sun8i_a83t_ths },
{ .compatible = "allwinner,sun8i-h3-ths", .data = &sun8i_h3_ths },
{ .compatible = "allwinner,sun8i-r40-ths", .data = &sun8i_r40_ths },
{ .compatible = "allwinner,sun50i-a64-ths", .data = &sun50i_a64_ths },
{ .compatible = "allwinner,sun50i-h5-ths", .data = &sun50i_h5_ths },
{ .compatible = "allwinner,sun50i-h6-ths", .data = &sun50i_h6_ths },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, of_ths_match);
static struct platform_driver ths_driver = {
.probe = sun8i_ths_probe,
.remove = sun8i_ths_remove,
.driver = {
.name = "sun8i-thermal",
.of_match_table = of_ths_match,
},
};
module_platform_driver(ths_driver);
MODULE_DESCRIPTION("Thermal sensor driver for Allwinner SOC");
MODULE_LICENSE("GPL v2");

View file

@ -360,7 +360,7 @@ static struct soctherm_oc_irq_chip_data soc_irq_cdata;
/**
* ccroc_writel() - writes a value to a CCROC register
* @ts: pointer to a struct tegra_soctherm
* @v: the value to write
* @value: the value to write
* @reg: the register offset
*
* Writes @v to @reg. No return value.
@ -435,6 +435,7 @@ static int tegra_thermctl_get_temp(void *data, int *out_temp)
/**
* enforce_temp_range() - check and enforce temperature range [min, max]
* @dev: struct device * of the SOC_THERM instance
* @trip_temp: the trip temperature to check
*
* Checks and enforces the permitted temperature range that SOC_THERM
@ -747,6 +748,8 @@ static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
/**
* tegra_soctherm_set_hwtrips() - set HW trip point from DT data
* @dev: struct device * of the SOC_THERM instance
* @sg: pointer to the sensor group to set the thermtrip temperature for
* @tz: struct thermal_zone_device *
*
* Configure the SOC_THERM HW trip points, setting "THERMTRIP"
* "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
@ -931,6 +934,7 @@ static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
/**
* soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
* @ts: pointer to a struct tegra_soctherm
* @alarm: The soctherm throttle id
* @enable: Flag indicating enable the soctherm over-current
* interrupt or disable it
@ -1156,7 +1160,7 @@ static void soctherm_oc_irq_enable(struct irq_data *data)
/**
* soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
* @irq_data: The interrupt request information
* @data: The interrupt request information
*
* Clears the interrupt request enable bit of the overcurrent
* interrupt request chip data.
@ -1206,6 +1210,7 @@ static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
/**
* soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
* @d: Interrupt request domain
* @ctrlr: Controller device tree node
* @intspec: Array of u32s from DTs "interrupt" property
* @intsize: Number of values inside the intspec array
* @out_hwirq: HW IRQ value associated with this interrupt
@ -1681,6 +1686,7 @@ err:
/**
* soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
* and register them as cooling devices.
* @pdev: Pointer to platform_device struct
*/
static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
{
@ -1751,6 +1757,7 @@ static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
/**
* throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
* @ts: pointer to a struct tegra_soctherm
* @level: describing the level LOW/MED/HIGH of throttling
*
* It's necessary to set up the CPU-local CCROC NV_THERM instance with
@ -1798,6 +1805,7 @@ static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
/**
* throttlectl_cpu_level_select() - program CPU pulse skipper config
* @ts: pointer to a struct tegra_soctherm
* @throt: the LIGHT/HEAVY of throttle event id
*
* Pulse skippers are used to throttle clock frequencies. This
@ -1841,6 +1849,7 @@ static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
/**
* throttlectl_cpu_mn() - program CPU pulse skipper configuration
* @ts: pointer to a struct tegra_soctherm
* @throt: the LIGHT/HEAVY of throttle event id
*
* Pulse skippers are used to throttle clock frequencies. This
@ -1874,6 +1883,7 @@ static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
/**
* throttlectl_gpu_level_select() - selects throttling level for GPU
* @ts: pointer to a struct tegra_soctherm
* @throt: the LIGHT/HEAVY of throttle event id
*
* This function programs soctherm's interface to GK20a NV_THERM to select
@ -1918,6 +1928,7 @@ static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
/**
* soctherm_throttle_program() - programs pulse skippers' configuration
* @ts: pointer to a struct tegra_soctherm
* @throt: the LIGHT/HEAVY of the throttle event id.
*
* Pulse skippers are used to throttle clock frequencies.

View file

@ -76,13 +76,17 @@ static int gadc_thermal_read_linear_lookup_table(struct device *dev,
struct gadc_thermal_info *gti)
{
struct device_node *np = dev->of_node;
enum iio_chan_type chan_type;
int ntable;
int ret;
ntable = of_property_count_elems_of_size(np, "temperature-lookup-table",
sizeof(u32));
if (ntable <= 0) {
dev_notice(dev, "no lookup table, assuming DAC channel returns milliCelcius\n");
ret = iio_get_channel_type(gti->channel, &chan_type);
if (ret || chan_type != IIO_TEMP)
dev_notice(dev,
"no lookup table, assuming DAC channel returns milliCelcius\n");
return 0;
}
@ -124,13 +128,6 @@ static int gadc_thermal_probe(struct platform_device *pdev)
if (!gti)
return -ENOMEM;
ret = gadc_thermal_read_linear_lookup_table(&pdev->dev, gti);
if (ret < 0)
return ret;
gti->dev = &pdev->dev;
platform_set_drvdata(pdev, gti);
gti->channel = devm_iio_channel_get(&pdev->dev, "sensor-channel");
if (IS_ERR(gti->channel)) {
ret = PTR_ERR(gti->channel);
@ -139,6 +136,13 @@ static int gadc_thermal_probe(struct platform_device *pdev)
return ret;
}
ret = gadc_thermal_read_linear_lookup_table(&pdev->dev, gti);
if (ret < 0)
return ret;
gti->dev = &pdev->dev;
platform_set_drvdata(pdev, gti);
gti->tz_dev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, gti,
&gadc_thermal_ops);
if (IS_ERR(gti->tz_dev)) {

View file

@ -92,14 +92,12 @@ thermal_cooling_device_stats_update(struct thermal_cooling_device *cdev,
/* device tree support */
#ifdef CONFIG_THERMAL_OF
int of_parse_thermal_zones(void);
void of_thermal_destroy_zones(void);
int of_thermal_get_ntrips(struct thermal_zone_device *);
bool of_thermal_is_trip_valid(struct thermal_zone_device *, int);
const struct thermal_trip *
of_thermal_get_trip_points(struct thermal_zone_device *);
#else
static inline int of_parse_thermal_zones(void) { return 0; }
static inline void of_thermal_destroy_zones(void) { }
static inline int of_thermal_get_ntrips(struct thermal_zone_device *tz)
{
return 0;

View file

@ -248,3 +248,31 @@ void thermal_remove_hwmon_sysfs(struct thermal_zone_device *tz)
kfree(hwmon);
}
EXPORT_SYMBOL_GPL(thermal_remove_hwmon_sysfs);
static void devm_thermal_hwmon_release(struct device *dev, void *res)
{
thermal_remove_hwmon_sysfs(*(struct thermal_zone_device **)res);
}
int devm_thermal_add_hwmon_sysfs(struct thermal_zone_device *tz)
{
struct thermal_zone_device **ptr;
int ret;
ptr = devres_alloc(devm_thermal_hwmon_release, sizeof(*ptr),
GFP_KERNEL);
if (!ptr)
return -ENOMEM;
ret = thermal_add_hwmon_sysfs(tz);
if (ret) {
devres_free(ptr);
return ret;
}
*ptr = tz;
devres_add(&tz->device, ptr);
return ret;
}
EXPORT_SYMBOL_GPL(devm_thermal_add_hwmon_sysfs);

View file

@ -17,6 +17,7 @@
#ifdef CONFIG_THERMAL_HWMON
int thermal_add_hwmon_sysfs(struct thermal_zone_device *tz);
int devm_thermal_add_hwmon_sysfs(struct thermal_zone_device *tz);
void thermal_remove_hwmon_sysfs(struct thermal_zone_device *tz);
#else
static inline int
@ -25,6 +26,12 @@ thermal_add_hwmon_sysfs(struct thermal_zone_device *tz)
return 0;
}
static inline int
devm_thermal_add_hwmon_sysfs(struct thermal_zone_device *tz)
{
return 0;
}
static inline void
thermal_remove_hwmon_sysfs(struct thermal_zone_device *tz)
{

View file

@ -17,8 +17,8 @@
/**
* notify_user_space - Notifies user space about thermal events
* @tz - thermal_zone_device
* @trip - trip point index
* @tz: thermal_zone_device
* @trip: trip point index
*
* This function notifies the user space through UEvents.
*/

View file

@ -45,6 +45,7 @@
* @clk_topcrm: topcrm clk structure
* @clk_apb: apb clk structure
* @regs: pointer to base address of the thermal sensor
* @dev: struct device pointer
*/
struct zx2967_thermal_priv {

View file

@ -1,6 +1,6 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* thermal_exynos.h - Samsung EXYNOS TMU device tree definitions
* thermal_exynos.h - Samsung Exynos TMU device tree definitions
*
* Copyright (C) 2014 Samsung Electronics
* Lukasz Majewski <l.majewski@samsung.com>

View file

@ -7,7 +7,7 @@
* Copyright (C) 2013 Texas Instruments Inc.
* Contact: Eduardo Valentin <eduardo.valentin@ti.com>
*
* Highly based on cpu_cooling.c.
* Highly based on cpufreq_cooling.c.
* Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
* Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
*/

View file

@ -19,7 +19,7 @@
struct cpufreq_policy;
#ifdef CONFIG_CPU_THERMAL
#ifdef CONFIG_CPU_FREQ_THERMAL
/**
* cpufreq_cooling_register - function to create cpufreq cooling device.
* @policy: cpufreq policy.
@ -40,7 +40,7 @@ void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev);
struct thermal_cooling_device *
of_cpufreq_cooling_register(struct cpufreq_policy *policy);
#else /* !CONFIG_CPU_THERMAL */
#else /* !CONFIG_CPU_FREQ_THERMAL */
static inline struct thermal_cooling_device *
cpufreq_cooling_register(struct cpufreq_policy *policy)
{
@ -58,6 +58,24 @@ of_cpufreq_cooling_register(struct cpufreq_policy *policy)
{
return NULL;
}
#endif /* CONFIG_CPU_THERMAL */
#endif /* CONFIG_CPU_FREQ_THERMAL */
struct cpuidle_driver;
#ifdef CONFIG_CPU_IDLE_THERMAL
int cpuidle_cooling_register(struct cpuidle_driver *drv);
int cpuidle_of_cooling_register(struct device_node *np,
struct cpuidle_driver *drv);
#else /* CONFIG_CPU_IDLE_THERMAL */
static inline int cpuidle_cooling_register(struct cpuidle_driver *drv)
{
return 0;
}
static inline int cpuidle_of_cooling_register(struct device_node *np,
struct cpuidle_driver *drv)
{
return 0;
}
#endif /* CONFIG_CPU_IDLE_THERMAL */
#endif /* __CPU_COOLING_H__ */

View file

@ -23,6 +23,7 @@ extern int ima_read_file(struct file *file, enum kernel_read_file_id id);
extern int ima_post_read_file(struct file *file, void *buf, loff_t size,
enum kernel_read_file_id id);
extern void ima_post_path_mknod(struct dentry *dentry);
extern int ima_file_hash(struct file *file, char *buf, size_t buf_size);
extern void ima_kexec_cmdline(const void *buf, int size);
#ifdef CONFIG_IMA_KEXEC
@ -91,6 +92,11 @@ static inline void ima_post_path_mknod(struct dentry *dentry)
return;
}
static inline int ima_file_hash(struct file *file, char *buf, size_t buf_size)
{
return -EOPNOTSUPP;
}
static inline void ima_kexec_cmdline(const void *buf, int size) {}
#endif /* CONFIG_IMA */
@ -101,6 +107,20 @@ static inline void ima_add_kexec_buffer(struct kimage *image)
{}
#endif
#ifdef CONFIG_IMA_MEASURE_ASYMMETRIC_KEYS
extern void ima_post_key_create_or_update(struct key *keyring,
struct key *key,
const void *payload, size_t plen,
unsigned long flags, bool create);
#else
static inline void ima_post_key_create_or_update(struct key *keyring,
struct key *key,
const void *payload,
size_t plen,
unsigned long flags,
bool create) {}
#endif /* CONFIG_IMA_MEASURE_ASYMMETRIC_KEYS */
#ifdef CONFIG_IMA_APPRAISE
extern bool is_ima_appraise_enabled(void);
extern void ima_inode_post_setattr(struct dentry *dentry);

View file

@ -547,6 +547,20 @@ struct sdw_slave_ops {
* @node: node for bus list
* @port_ready: Port ready completion flag for each Slave port
* @dev_num: Device Number assigned by Bus
* @probed: boolean tracking driver state
* @probe_complete: completion utility to control potential races
* on startup between driver probe/initialization and SoundWire
* Slave state changes/implementation-defined interrupts
* @enumeration_complete: completion utility to control potential races
* on startup between device enumeration and read/write access to the
* Slave device
* @initialization_complete: completion utility to control potential races
* on startup between device enumeration and settings being restored
* @unattach_request: mask field to keep track why the Slave re-attached and
* was re-initialized. This is useful to deal with potential race conditions
* between the Master suspending and the codec resuming, and make sure that
* when the Master triggered a reset the Slave is properly enumerated and
* initialized
*/
struct sdw_slave {
struct sdw_slave_id id;
@ -561,6 +575,11 @@ struct sdw_slave {
struct list_head node;
struct completion *port_ready;
u16 dev_num;
bool probed;
struct completion probe_complete;
struct completion enumeration_complete;
struct completion initialization_complete;
u32 unattach_request;
};
#define dev_to_sdw_dev(_dev) container_of(_dev, struct sdw_slave, dev)

View file

@ -4,36 +4,174 @@
#ifndef __SDW_INTEL_H
#define __SDW_INTEL_H
#include <linux/irqreturn.h>
/**
* struct sdw_intel_ops: Intel audio driver callback ops
*
* @config_stream: configure the stream with the hw_params
* the first argument containing the context is mandatory
* struct sdw_intel_stream_params_data: configuration passed during
* the @params_stream callback, e.g. for interaction with DSP
* firmware.
*/
struct sdw_intel_ops {
int (*config_stream)(void *arg, void *substream,
void *dai, void *hw_params, int stream_num);
struct sdw_intel_stream_params_data {
struct snd_pcm_substream *substream;
struct snd_soc_dai *dai;
struct snd_pcm_hw_params *hw_params;
int link_id;
int alh_stream_id;
};
/**
* struct sdw_intel_res - Soundwire Intel resource structure
* struct sdw_intel_stream_free_data: configuration passed during
* the @free_stream callback, e.g. for interaction with DSP
* firmware.
*/
struct sdw_intel_stream_free_data {
struct snd_pcm_substream *substream;
struct snd_soc_dai *dai;
int link_id;
};
/**
* struct sdw_intel_ops: Intel audio driver callback ops
*
*/
struct sdw_intel_ops {
int (*params_stream)(struct device *dev,
struct sdw_intel_stream_params_data *params_data);
int (*free_stream)(struct device *dev,
struct sdw_intel_stream_free_data *free_data);
};
/**
* struct sdw_intel_acpi_info - Soundwire Intel information found in ACPI tables
* @handle: ACPI controller handle
* @count: link count found with "sdw-master-count" property
* @link_mask: bit-wise mask listing links enabled by BIOS menu
*
* this structure could be expanded to e.g. provide all the _ADR
* information in case the link_mask is not sufficient to identify
* platform capabilities.
*/
struct sdw_intel_acpi_info {
acpi_handle handle;
int count;
u32 link_mask;
};
struct sdw_intel_link_res;
/* Intel clock-stop/pm_runtime quirk definitions */
/*
* Force the clock to remain on during pm_runtime suspend. This might
* be needed if Slave devices do not have an alternate clock source or
* if the latency requirements are very strict.
*/
#define SDW_INTEL_CLK_STOP_NOT_ALLOWED BIT(0)
/*
* Stop the bus during pm_runtime suspend. If set, a complete bus
* reset and re-enumeration will be performed when the bus
* restarts. This mode shall not be used if Slave devices can generate
* in-band wakes.
*/
#define SDW_INTEL_CLK_STOP_TEARDOWN BIT(1)
/*
* Stop the bus during pm_suspend if Slaves are not wake capable
* (e.g. speaker amplifiers). The clock-stop mode is typically
* slightly higher power than when the IP is completely powered-off.
*/
#define SDW_INTEL_CLK_STOP_WAKE_CAPABLE_ONLY BIT(2)
/*
* Require a bus reset (and complete re-enumeration) when exiting
* clock stop modes. This may be needed if the controller power was
* turned off and all context lost. This quirk shall not be used if a
* Slave device needs to remain enumerated and keep its context,
* e.g. to provide the reasons for the wake, report acoustic events or
* pass a history buffer.
*/
#define SDW_INTEL_CLK_STOP_BUS_RESET BIT(3)
/**
* struct sdw_intel_ctx - context allocated by the controller
* driver probe
* @count: link count
* @mmio_base: mmio base of SoundWire registers, only used to check
* hardware capabilities after all power dependencies are settled.
* @link_mask: bit-wise mask listing SoundWire links reported by the
* Controller
* @handle: ACPI parent handle
* @links: information for each link (controller-specific and kept
* opaque here)
* @link_list: list to handle interrupts across all links
* @shim_lock: mutex to handle concurrent rmw access to shared SHIM registers.
*/
struct sdw_intel_ctx {
int count;
void __iomem *mmio_base;
u32 link_mask;
acpi_handle handle;
struct sdw_intel_link_res *links;
struct list_head link_list;
struct mutex shim_lock; /* lock for access to shared SHIM registers */
};
/**
* struct sdw_intel_res - Soundwire Intel global resource structure,
* typically populated by the DSP driver
*
* @count: link count
* @mmio_base: mmio base of SoundWire registers
* @irq: interrupt number
* @handle: ACPI parent handle
* @parent: parent device
* @ops: callback ops
* @arg: callback arg
* @dev: device implementing hwparams and free callbacks
* @link_mask: bit-wise mask listing links selected by the DSP driver
* This mask may be a subset of the one reported by the controller since
* machine-specific quirks are handled in the DSP driver.
* @clock_stop_quirks: mask array of possible behaviors requested by the
* DSP driver. The quirks are common for all links for now.
*/
struct sdw_intel_res {
int count;
void __iomem *mmio_base;
int irq;
acpi_handle handle;
struct device *parent;
const struct sdw_intel_ops *ops;
void *arg;
struct device *dev;
u32 link_mask;
u32 clock_stop_quirks;
};
void *sdw_intel_init(acpi_handle *parent_handle, struct sdw_intel_res *res);
void sdw_intel_exit(void *arg);
/*
* On Intel platforms, the SoundWire IP has dependencies on power
* rails shared with the DSP, and the initialization steps are split
* in three. First an ACPI scan to check what the firmware describes
* in DSDT tables, then an allocation step (with no hardware
* configuration but with all the relevant devices created) and last
* the actual hardware configuration. The final stage is a global
* interrupt enable which is controlled by the DSP driver. Splitting
* these phases helps simplify the boot flow and make early decisions
* on e.g. which machine driver to select (I2S mode, HDaudio or
* SoundWire).
*/
int sdw_intel_acpi_scan(acpi_handle *parent_handle,
struct sdw_intel_acpi_info *info);
void sdw_intel_process_wakeen_event(struct sdw_intel_ctx *ctx);
struct sdw_intel_ctx *
sdw_intel_probe(struct sdw_intel_res *res);
int sdw_intel_startup(struct sdw_intel_ctx *ctx);
void sdw_intel_exit(struct sdw_intel_ctx *ctx);
void sdw_intel_enable_irq(void __iomem *mmio_base, bool enable);
irqreturn_t sdw_intel_thread(int irq, void *dev_id);
#endif

View file

@ -197,7 +197,7 @@ struct snd_ac97_bus_ops {
struct snd_ac97_bus {
/* -- lowlevel (hardware) driver specific -- */
struct snd_ac97_bus_ops *ops;
const struct snd_ac97_bus_ops *ops;
void *private_data;
void (*private_free) (struct snd_ac97_bus *bus);
/* --- */
@ -310,7 +310,8 @@ static inline int ac97_can_spdif(struct snd_ac97 * ac97)
/* functions */
/* create new AC97 bus */
int snd_ac97_bus(struct snd_card *card, int num, struct snd_ac97_bus_ops *ops,
int snd_ac97_bus(struct snd_card *card, int num,
const struct snd_ac97_bus_ops *ops,
void *private_data, struct snd_ac97_bus **rbus);
/* create mixer controls */
int snd_ac97_mixer(struct snd_ac97_bus *bus, struct snd_ac97_template *template,

View file

@ -22,6 +22,16 @@ typedef int (snd_kcontrol_tlv_rw_t)(struct snd_kcontrol *kcontrol,
unsigned int size,
unsigned int __user *tlv);
/* internal flag for skipping validations */
#ifdef CONFIG_SND_CTL_VALIDATION
#define SNDRV_CTL_ELEM_ACCESS_SKIP_CHECK (1 << 27)
#define snd_ctl_skip_validation(info) \
((info)->access & SNDRV_CTL_ELEM_ACCESS_SKIP_CHECK)
#else
#define SNDRV_CTL_ELEM_ACCESS_SKIP_CHECK 0
#define snd_ctl_skip_validation(info) true
#endif
enum {
SNDRV_CTL_TLV_OP_READ = 0,
SNDRV_CTL_TLV_OP_WRITE = 1,

View file

@ -69,7 +69,7 @@ struct snd_device {
enum snd_device_state state; /* state of the device */
enum snd_device_type type; /* device type */
void *device_data; /* device structure */
struct snd_device_ops *ops; /* operations */
const struct snd_device_ops *ops; /* operations */
};
#define snd_device(n) list_entry(n, struct snd_device, list)
@ -120,6 +120,9 @@ struct snd_card {
int sync_irq; /* assigned irq, used for PCM sync */
wait_queue_head_t remove_sleep;
size_t total_pcm_alloc_bytes; /* total amount of allocated buffers */
struct mutex memory_mutex; /* protection for the above */
#ifdef CONFIG_PM
unsigned int power_state; /* power state */
wait_queue_head_t power_sleep;
@ -256,7 +259,7 @@ static inline void snd_card_unref(struct snd_card *card)
/* device.c */
int snd_device_new(struct snd_card *card, enum snd_device_type type,
void *device_data, struct snd_device_ops *ops);
void *device_data, const struct snd_device_ops *ops);
int snd_device_register(struct snd_card *card, void *device_data);
int snd_device_register_all(struct snd_card *card);
void snd_device_disconnect(struct snd_card *card, void *device_data);

View file

@ -51,7 +51,6 @@ struct hda_bus {
DECLARE_BITMAP(pcm_dev_bits, SNDRV_PCM_DEVICES);
/* misc op flags */
unsigned int needs_damn_long_delay :1;
unsigned int allow_bus_reset:1; /* allow bus reset at fatal error */
/* status for codec/controller */
unsigned int shutdown :1; /* being unloaded */

View file

@ -24,6 +24,9 @@ int snd_hdac_regmap_write_raw(struct hdac_device *codec, unsigned int reg,
unsigned int val);
int snd_hdac_regmap_update_raw(struct hdac_device *codec, unsigned int reg,
unsigned int mask, unsigned int val);
int snd_hdac_regmap_update_raw_once(struct hdac_device *codec, unsigned int reg,
unsigned int mask, unsigned int val);
void snd_hdac_regmap_sync(struct hdac_device *codec);
/**
* snd_hdac_regmap_encode_verb - encode the verb to a pseudo register

View file

@ -8,6 +8,7 @@
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/pm_runtime.h>
#include <linux/timecounter.h>
#include <sound/core.h>
@ -86,6 +87,7 @@ struct hdac_device {
/* regmap */
struct regmap *regmap;
struct mutex regmap_lock;
struct snd_array vendor_verbs;
bool lazy_cache:1; /* don't wake up for writes */
bool caps_overwriting:1; /* caps overwrite being in process */
@ -317,6 +319,7 @@ struct hdac_bus {
struct hdac_rb corb;
struct hdac_rb rirb;
unsigned int last_cmd[HDA_MAX_CODECS]; /* last sent command */
wait_queue_head_t rirb_wq;
/* CORB/RIRB and position buffers */
struct snd_dma_buffer rb;
@ -330,6 +333,7 @@ struct hdac_bus {
bool chip_init:1; /* h/w initialized */
/* behavior flags */
bool aligned_mmio:1; /* aligned MMIO access */
bool sync_write:1; /* sync after verb write */
bool use_posbuf:1; /* use position buffer */
bool snoop:1; /* enable snooping */
@ -337,6 +341,7 @@ struct hdac_bus {
bool reverse_assign:1; /* assign devices in reverse order */
bool corbrp_self_clear:1; /* CORBRP clears itself after reset */
bool polling_mode:1;
bool needs_damn_long_delay:1;
int poll_count;
@ -405,34 +410,61 @@ void snd_hdac_bus_free_stream_pages(struct hdac_bus *bus);
unsigned int snd_hdac_aligned_read(void __iomem *addr, unsigned int mask);
void snd_hdac_aligned_write(unsigned int val, void __iomem *addr,
unsigned int mask);
#define snd_hdac_reg_writeb(v, addr) snd_hdac_aligned_write(v, addr, 0xff)
#define snd_hdac_reg_writew(v, addr) snd_hdac_aligned_write(v, addr, 0xffff)
#define snd_hdac_reg_readb(addr) snd_hdac_aligned_read(addr, 0xff)
#define snd_hdac_reg_readw(addr) snd_hdac_aligned_read(addr, 0xffff)
#else /* CONFIG_SND_HDA_ALIGNED_MMIO */
#define snd_hdac_reg_writeb(val, addr) writeb(val, addr)
#define snd_hdac_reg_writew(val, addr) writew(val, addr)
#define snd_hdac_reg_readb(addr) readb(addr)
#define snd_hdac_reg_readw(addr) readw(addr)
#endif /* CONFIG_SND_HDA_ALIGNED_MMIO */
#define snd_hdac_reg_writel(val, addr) writel(val, addr)
#define snd_hdac_reg_readl(addr) readl(addr)
#define snd_hdac_aligned_mmio(bus) (bus)->aligned_mmio
#else
#define snd_hdac_aligned_mmio(bus) false
#define snd_hdac_aligned_read(addr, mask) 0
#define snd_hdac_aligned_write(val, addr, mask) do {} while (0)
#endif
static inline void snd_hdac_reg_writeb(struct hdac_bus *bus, void __iomem *addr,
u8 val)
{
if (snd_hdac_aligned_mmio(bus))
snd_hdac_aligned_write(val, addr, 0xff);
else
writeb(val, addr);
}
static inline void snd_hdac_reg_writew(struct hdac_bus *bus, void __iomem *addr,
u16 val)
{
if (snd_hdac_aligned_mmio(bus))
snd_hdac_aligned_write(val, addr, 0xffff);
else
writew(val, addr);
}
static inline u8 snd_hdac_reg_readb(struct hdac_bus *bus, void __iomem *addr)
{
return snd_hdac_aligned_mmio(bus) ?
snd_hdac_aligned_read(addr, 0xff) : readb(addr);
}
static inline u16 snd_hdac_reg_readw(struct hdac_bus *bus, void __iomem *addr)
{
return snd_hdac_aligned_mmio(bus) ?
snd_hdac_aligned_read(addr, 0xffff) : readw(addr);
}
#define snd_hdac_reg_writel(bus, addr, val) writel(val, addr)
#define snd_hdac_reg_readl(bus, addr) readl(addr)
/*
* macros for easy use
*/
#define _snd_hdac_chip_writeb(chip, reg, value) \
snd_hdac_reg_writeb(value, (chip)->remap_addr + (reg))
snd_hdac_reg_writeb(chip, (chip)->remap_addr + (reg), value)
#define _snd_hdac_chip_readb(chip, reg) \
snd_hdac_reg_readb((chip)->remap_addr + (reg))
snd_hdac_reg_readb(chip, (chip)->remap_addr + (reg))
#define _snd_hdac_chip_writew(chip, reg, value) \
snd_hdac_reg_writew(value, (chip)->remap_addr + (reg))
snd_hdac_reg_writew(chip, (chip)->remap_addr + (reg), value)
#define _snd_hdac_chip_readw(chip, reg) \
snd_hdac_reg_readw((chip)->remap_addr + (reg))
snd_hdac_reg_readw(chip, (chip)->remap_addr + (reg))
#define _snd_hdac_chip_writel(chip, reg, value) \
snd_hdac_reg_writel(value, (chip)->remap_addr + (reg))
snd_hdac_reg_writel(chip, (chip)->remap_addr + (reg), value)
#define _snd_hdac_chip_readl(chip, reg) \
snd_hdac_reg_readl((chip)->remap_addr + (reg))
snd_hdac_reg_readl(chip, (chip)->remap_addr + (reg))
/* read/write a register, pass without AZX_REG_ prefix */
#define snd_hdac_chip_writel(chip, reg, value) \
@ -540,17 +572,17 @@ int snd_hdac_get_stream_stripe_ctl(struct hdac_bus *bus,
*/
/* read/write a register, pass without AZX_REG_ prefix */
#define snd_hdac_stream_writel(dev, reg, value) \
snd_hdac_reg_writel(value, (dev)->sd_addr + AZX_REG_ ## reg)
snd_hdac_reg_writel((dev)->bus, (dev)->sd_addr + AZX_REG_ ## reg, value)
#define snd_hdac_stream_writew(dev, reg, value) \
snd_hdac_reg_writew(value, (dev)->sd_addr + AZX_REG_ ## reg)
snd_hdac_reg_writew((dev)->bus, (dev)->sd_addr + AZX_REG_ ## reg, value)
#define snd_hdac_stream_writeb(dev, reg, value) \
snd_hdac_reg_writeb(value, (dev)->sd_addr + AZX_REG_ ## reg)
snd_hdac_reg_writeb((dev)->bus, (dev)->sd_addr + AZX_REG_ ## reg, value)
#define snd_hdac_stream_readl(dev, reg) \
snd_hdac_reg_readl((dev)->sd_addr + AZX_REG_ ## reg)
snd_hdac_reg_readl((dev)->bus, (dev)->sd_addr + AZX_REG_ ## reg)
#define snd_hdac_stream_readw(dev, reg) \
snd_hdac_reg_readw((dev)->sd_addr + AZX_REG_ ## reg)
snd_hdac_reg_readw((dev)->bus, (dev)->sd_addr + AZX_REG_ ## reg)
#define snd_hdac_stream_readb(dev, reg) \
snd_hdac_reg_readb((dev)->sd_addr + AZX_REG_ ## reg)
snd_hdac_reg_readb((dev)->bus, (dev)->sd_addr + AZX_REG_ ## reg)
/* update a register, pass without AZX_REG_ prefix */
#define snd_hdac_stream_updatel(dev, reg, mask, val) \

View file

@ -64,7 +64,7 @@ struct snd_info_entry {
unsigned short content;
union {
struct snd_info_entry_text text;
struct snd_info_entry_ops *ops;
const struct snd_info_entry_ops *ops;
} c;
struct snd_info_entry *parent;
struct module *module;

View file

@ -37,7 +37,7 @@
#define SNDRV_DEFAULT_PTR SNDRV_DEFAULT_STR
#ifdef SNDRV_LEGACY_FIND_FREE_IOPORT
static long snd_legacy_find_free_ioport(long *port_table, long size)
static long snd_legacy_find_free_ioport(const long *port_table, long size)
{
while (*port_table != -1) {
if (request_region(*port_table, size, "ALSA test")) {
@ -58,7 +58,7 @@ static irqreturn_t snd_legacy_empty_irq_handler(int irq, void *dev_id)
return IRQ_HANDLED;
}
static int snd_legacy_find_free_irq(int *irq_table)
static int snd_legacy_find_free_irq(const int *irq_table)
{
while (*irq_table != -1) {
if (!request_irq(*irq_table, snd_legacy_empty_irq_handler,
@ -74,7 +74,7 @@ static int snd_legacy_find_free_irq(int *irq_table)
#endif
#ifdef SNDRV_LEGACY_FIND_FREE_DMA
static int snd_legacy_find_free_dma(int *dma_table)
static int snd_legacy_find_free_dma(const int *dma_table)
{
while (*dma_table != -1) {
if (!request_dma(*dma_table, "ALSA Test DMA")) {

View file

@ -44,6 +44,7 @@ struct snd_pcm_hardware {
size_t fifo_size; /* fifo size in bytes */
};
struct snd_pcm_status64;
struct snd_pcm_substream;
struct snd_pcm_audio_tstamp_config; /* definitions further down */
@ -62,7 +63,7 @@ struct snd_pcm_ops {
int (*sync_stop)(struct snd_pcm_substream *substream);
snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *substream);
int (*get_time_info)(struct snd_pcm_substream *substream,
struct timespec *system_ts, struct timespec *audio_ts,
struct timespec64 *system_ts, struct timespec64 *audio_ts,
struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
struct snd_pcm_audio_tstamp_report *audio_tstamp_report);
int (*fill_silence)(struct snd_pcm_substream *substream, int channel,
@ -343,7 +344,7 @@ static inline void snd_pcm_pack_audio_tstamp_report(__u32 *data, __u32 *accuracy
struct snd_pcm_runtime {
/* -- Status -- */
struct snd_pcm_substream *trigger_master;
struct timespec trigger_tstamp; /* trigger timestamp */
struct timespec64 trigger_tstamp; /* trigger timestamp */
bool trigger_tstamp_latched; /* trigger timestamp latched in low-level driver/hardware */
int overrange;
snd_pcm_uframes_t avail_max;
@ -421,7 +422,7 @@ struct snd_pcm_runtime {
/* -- audio timestamp config -- */
struct snd_pcm_audio_tstamp_config audio_tstamp_config;
struct snd_pcm_audio_tstamp_report audio_tstamp_report;
struct timespec driver_tstamp;
struct timespec64 driver_tstamp;
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
/* -- OSS things -- */
@ -559,8 +560,8 @@ int snd_pcm_notify(struct snd_pcm_notify *notify, int nfree);
int snd_pcm_info(struct snd_pcm_substream *substream, struct snd_pcm_info *info);
int snd_pcm_info_user(struct snd_pcm_substream *substream,
struct snd_pcm_info __user *info);
int snd_pcm_status(struct snd_pcm_substream *substream,
struct snd_pcm_status *status);
int snd_pcm_status64(struct snd_pcm_substream *substream,
struct snd_pcm_status64 *status);
int snd_pcm_start(struct snd_pcm_substream *substream);
int snd_pcm_stop(struct snd_pcm_substream *substream, snd_pcm_state_t status);
int snd_pcm_drain_done(struct snd_pcm_substream *substream);
@ -1156,22 +1157,22 @@ static inline void snd_pcm_set_runtime_buffer(struct snd_pcm_substream *substrea
}
/**
* snd_pcm_gettime - Fill the timespec depending on the timestamp mode
* snd_pcm_gettime - Fill the timespec64 depending on the timestamp mode
* @runtime: PCM runtime instance
* @tv: timespec to fill
* @tv: timespec64 to fill
*/
static inline void snd_pcm_gettime(struct snd_pcm_runtime *runtime,
struct timespec *tv)
struct timespec64 *tv)
{
switch (runtime->tstamp_type) {
case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC:
ktime_get_ts(tv);
ktime_get_ts64(tv);
break;
case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW:
getrawmonotonic(tv);
ktime_get_raw_ts64(tv);
break;
default:
getnstimeofday(tv);
ktime_get_real_ts64(tv);
break;
}
}
@ -1423,4 +1424,55 @@ static inline u64 pcm_format_to_bits(snd_pcm_format_t pcm_format)
#define pcm_dbg(pcm, fmt, args...) \
dev_dbg((pcm)->card->dev, fmt, ##args)
struct snd_pcm_status64 {
snd_pcm_state_t state; /* stream state */
u8 rsvd[4];
s64 trigger_tstamp_sec; /* time when stream was started/stopped/paused */
s64 trigger_tstamp_nsec;
s64 tstamp_sec; /* reference timestamp */
s64 tstamp_nsec;
snd_pcm_uframes_t appl_ptr; /* appl ptr */
snd_pcm_uframes_t hw_ptr; /* hw ptr */
snd_pcm_sframes_t delay; /* current delay in frames */
snd_pcm_uframes_t avail; /* number of frames available */
snd_pcm_uframes_t avail_max; /* max frames available on hw since last status */
snd_pcm_uframes_t overrange; /* count of ADC (capture) overrange detections from last status */
snd_pcm_state_t suspended_state; /* suspended stream state */
__u32 audio_tstamp_data; /* needed for 64-bit alignment, used for configs/report to/from userspace */
s64 audio_tstamp_sec; /* sample counter, wall clock, PHC or on-demand sync'ed */
s64 audio_tstamp_nsec;
s64 driver_tstamp_sec; /* useful in case reference system tstamp is reported with delay */
s64 driver_tstamp_nsec;
__u32 audio_tstamp_accuracy; /* in ns units, only valid if indicated in audio_tstamp_data */
unsigned char reserved[52-4*sizeof(s64)]; /* must be filled with zero */
};
#define SNDRV_PCM_IOCTL_STATUS64 _IOR('A', 0x20, struct snd_pcm_status64)
#define SNDRV_PCM_IOCTL_STATUS_EXT64 _IOWR('A', 0x24, struct snd_pcm_status64)
struct snd_pcm_status32 {
s32 state; /* stream state */
s32 trigger_tstamp_sec; /* time when stream was started/stopped/paused */
s32 trigger_tstamp_nsec;
s32 tstamp_sec; /* reference timestamp */
s32 tstamp_nsec;
u32 appl_ptr; /* appl ptr */
u32 hw_ptr; /* hw ptr */
s32 delay; /* current delay in frames */
u32 avail; /* number of frames available */
u32 avail_max; /* max frames available on hw since last status */
u32 overrange; /* count of ADC (capture) overrange detections from last status */
s32 suspended_state; /* suspended stream state */
u32 audio_tstamp_data; /* needed for 64-bit alignment, used for configs/report to/from userspace */
s32 audio_tstamp_sec; /* sample counter, wall clock, PHC or on-demand sync'ed */
s32 audio_tstamp_nsec;
s32 driver_tstamp_sec; /* useful in case reference system tstamp is reported with delay */
s32 driver_tstamp_nsec;
u32 audio_tstamp_accuracy; /* in ns units, only valid if indicated in audio_tstamp_data */
unsigned char reserved[52-4*sizeof(s32)]; /* must be filled with zero */
};
#define SNDRV_PCM_IOCTL_STATUS32 _IOR('A', 0x20, struct snd_pcm_status32)
#define SNDRV_PCM_IOCTL_STATUS_EXT32 _IOWR('A', 0x24, struct snd_pcm_status32)
#endif /* __SOUND_PCM_H */

View file

@ -174,7 +174,8 @@ enum {
};
/* Prototypes for midi_process.c */
void snd_midi_process_event(struct snd_midi_op *ops, struct snd_seq_event *ev,
void snd_midi_process_event(const struct snd_midi_op *ops,
struct snd_seq_event *ev,
struct snd_midi_channel_set *chanset);
void snd_midi_channel_set_clear(struct snd_midi_channel_set *chset);
struct snd_midi_channel_set *snd_midi_channel_alloc_set(int n);

View file

@ -31,6 +31,12 @@ extern struct snd_soc_acpi_mach snd_soc_acpi_intel_tgl_machines[];
extern struct snd_soc_acpi_mach snd_soc_acpi_intel_ehl_machines[];
extern struct snd_soc_acpi_mach snd_soc_acpi_intel_jsl_machines[];
extern struct snd_soc_acpi_mach snd_soc_acpi_intel_cnl_sdw_machines[];
extern struct snd_soc_acpi_mach snd_soc_acpi_intel_cfl_sdw_machines[];
extern struct snd_soc_acpi_mach snd_soc_acpi_intel_cml_sdw_machines[];
extern struct snd_soc_acpi_mach snd_soc_acpi_intel_icl_sdw_machines[];
extern struct snd_soc_acpi_mach snd_soc_acpi_intel_tgl_sdw_machines[];
/*
* generic table used for HDA codec-based platforms, possibly with
* additional ACPI-enumerated codecs

Some files were not shown because too many files have changed in this diff Show more