Changes in 6.1.16
HID: asus: use spinlock to protect concurrent accesses
HID: asus: use spinlock to safely schedule workers
powerpc/mm: Rearrange if-else block to avoid clang warning
ata: ahci: Revert "ata: ahci: Add Tiger Lake UP{3,4} AHCI controller"
ARM: OMAP2+: Fix memory leak in realtime_counter_init()
arm64: dts: qcom: qcs404: use symbol names for PCIe resets
arm64: dts: qcom: msm8996-tone: Fix USB taking 6 minutes to wake up
arm64: dts: qcom: sm8150-kumano: Panel framebuffer is 2.5k instead of 4k
arm64: dts: qcom: sm6350: Fix up the ramoops node
arm64: dts: qcom: sm6125: Reorder HSUSB PHY clocks to match bindings
arm64: dts: qcom: sm6125-seine: Clean up gpio-keys (volume down)
arm64: dts: imx8m: Align SoC unique ID node unit address
ARM: zynq: Fix refcount leak in zynq_early_slcr_init
arm64: dts: mediatek: mt8195: Add power domain to U3PHY1 T-PHY
arm64: dts: mediatek: mt8183: Fix systimer 13 MHz clock description
arm64: dts: mediatek: mt8192: Fix systimer 13 MHz clock description
arm64: dts: mediatek: mt8195: Fix systimer 13 MHz clock description
arm64: dts: mediatek: mt8186: Fix systimer 13 MHz clock description
arm64: dts: qcom: sdm845-db845c: fix audio codec interrupt pin name
x86/acpi/boot: Do not register processors that cannot be onlined for x2APIC
arm64: dts: qcom: sc7180: correct SPMI bus address cells
arm64: dts: qcom: sc7280: correct SPMI bus address cells
arm64: dts: qcom: sc8280xp: correct SPMI bus address cells
arm64: dts: qcom: sc8280xp: Vote for CX in USB controllers
arm64: dts: meson-gxl: jethub-j80: Fix WiFi MAC address node
arm64: dts: meson-gxl: jethub-j80: Fix Bluetooth MAC node name
arm64: dts: meson-axg: jethub-j1xx: Fix MAC address node names
arm64: dts: meson-gx: Fix Ethernet MAC address unit name
arm64: dts: meson-g12a: Fix internal Ethernet PHY unit name
arm64: dts: meson-gx: Fix the SCPI DVFS node name and unit address
cpuidle, intel_idle: Fix CPUIDLE_FLAG_IRQ_ENABLE *again*
arm64: dts: ti: k3-am62: Enable SPI nodes at the board level
arm64: dts: ti: k3-am62-main: Fix clocks for McSPI
arm64: tegra: Fix duplicate regulator on Jetson TX1
arm64: dts: msm8992-bullhead: add memory hole region
arm64: dts: qcom: msm8992-bullhead: Fix cont_splash_mem size
arm64: dts: qcom: msm8992-bullhead: Disable dfps_data_mem
arm64: dts: qcom: ipq8074: correct USB3 QMP PHY-s clock output names
arm64: dts: qcom: ipq8074: fix Gen2 PCIe QMP PHY
arm64: dts: qcom: ipq8074: fix Gen3 PCIe QMP PHY
arm64: dts: qcom: ipq8074: correct Gen2 PCIe ranges
arm64: dts: qcom: ipq8074: fix Gen3 PCIe node
arm64: dts: qcom: ipq8074: correct PCIe QMP PHY output clock names
arm64: dts: meson: remove CPU opps below 1GHz for G12A boards
ARM: OMAP1: call platform_device_put() in error case in omap1_dm_timer_init()
arm64: dts: mediatek: mt8192: Mark scp_adsp clock as broken
ARM: bcm2835_defconfig: Enable the framebuffer
ARM: s3c: fix s3c64xx_set_timer_source prototype
arm64: dts: ti: k3-j7200: Fix wakeup pinmux range
ARM: dts: exynos: correct wr-active property in Exynos3250 Rinato
ARM: imx: Call ida_simple_remove() for ida_simple_get
arm64: dts: amlogic: meson-gx: fix SCPI clock dvfs node name
arm64: dts: amlogic: meson-axg: fix SCPI clock dvfs node name
arm64: dts: amlogic: meson-gx: add missing SCPI sensors compatible
arm64: dts: amlogic: meson-axg-jethome-jethub-j1xx: fix supply name of USB controller node
arm64: dts: amlogic: meson-gxl-s905d-sml5442tw: drop invalid clock-names property
arm64: dts: amlogic: meson-gx: add missing unit address to rng node name
arm64: dts: amlogic: meson-gxl-s905w-jethome-jethub-j80: fix invalid rtc node name
arm64: dts: amlogic: meson-axg-jethome-jethub-j1xx: fix invalid rtc node name
arm64: dts: amlogic: meson-gxl: add missing unit address to eth-phy-mux node name
arm64: dts: amlogic: meson-gx-libretech-pc: fix update button name
arm64: dts: amlogic: meson-sm1-bananapi-m5: fix adc keys node names
arm64: dts: amlogic: meson-gxl-s905d-phicomm-n1: fix led node name
arm64: dts: amlogic: meson-gxbb-kii-pro: fix led node name
arm64: dts: amlogic: meson-sm1-odroid-hc4: fix active fan thermal trip
locking/rwsem: Disable preemption in all down_read*() and up_read() code paths
arm64: dts: renesas: beacon-renesom: Fix gpio expander reference
arm64: dts: meson: radxa-zero: allow usb otg mode
arm64: dts: meson: bananapi-m5: switch VDDIO_C pin to OPEN_DRAIN
ARM: dts: sun8i: nanopi-duo2: Fix regulator GPIO reference
ublk_drv: remove nr_aborted_queues from ublk_device
ublk_drv: don't probe partitions if the ubq daemon isn't trusted
ARM: dts: imx7s: correct iomuxc gpr mux controller cells
sbitmap: remove redundant check in __sbitmap_queue_get_batch
sbitmap: Use single per-bitmap counting to wake up queued tags
sbitmap: correct wake_batch recalculation to avoid potential IO hung
arm64: dts: mt8195: Fix CPU map for single-cluster SoC
arm64: dts: mt8192: Fix CPU map for single-cluster SoC
arm64: dts: mt8186: Fix CPU map for single-cluster SoC
arm64: dts: mediatek: mt7622: Add missing pwm-cells to pwm node
arm64: dts: mediatek: mt8186: Fix watchdog compatible
arm64: dts: mediatek: mt8195: Fix watchdog compatible
arm64: dts: mediatek: mt7986: Fix watchdog compatible
ARM: dts: stm32: Update part number NVMEM description on stm32mp131
blk-mq: avoid sleep in blk_mq_alloc_request_hctx
blk-mq: remove stale comment for blk_mq_sched_mark_restart_hctx
blk-mq: wait on correct sbitmap_queue in blk_mq_mark_tag_wait
blk-mq: Fix potential io hung for shared sbitmap per tagset
blk-mq: correct stale comment of .get_budget
arm64: dts: qcom: msm8996: support using GPLL0 as kryocc input
arm64: dts: qcom: msm8996 switch from RPM_SMD_BB_CLK1 to RPM_SMD_XO_CLK_SRC
arm64: dts: qcom: sm8350: drop incorrect cells from serial
arm64: dts: qcom: sm8450: drop incorrect cells from serial
arm64: dts: qcom: msm8992-lg-bullhead: Correct memory overlaps with the SMEM and MPSS memory regions
arm64: dts: qcom: msm8953: correct TLMM gpio-ranges
arm64: dts: qcom: msm8992-*: Fix up comments
arm64: dts: qcom: msm8992-lg-bullhead: Enable regulators
s390/dasd: Fix potential memleak in dasd_eckd_init()
sched/rt: pick_next_rt_entity(): check list_entry
perf/x86/intel/ds: Fix the conversion from TSC to perf time
x86/perf/zhaoxin: Add stepping check for ZXC
KEYS: asymmetric: Fix ECDSA use via keyctl uapi
block: ublk: check IO buffer based on flag need_get_data
arm64: dts: qcom: pmk8350: Specify PBS register for PON
arm64: dts: qcom: pmk8350: Use the correct PON compatible
erofs: relinquish volume with mutex held
block: sync mixed merged request's failfast with 1st bio's
block: Fix io statistics for cgroup in throttle path
block: bio-integrity: Copy flags when bio_integrity_payload is cloned
block: use proper return value from bio_failfast()
wifi: mt76: mt7915: add missing of_node_put()
wifi: mt76: mt7921s: fix slab-out-of-bounds access in sdio host
wifi: mt76: mt7915: check return value before accessing free_block_num
wifi: mt76: mt7915: drop always true condition of __mt7915_reg_addr()
wifi: mt76: mt7915: fix unintended sign extension of mt7915_hw_queue_read()
wifi: mt76: fix coverity uninit_use_in_call in mt76_connac2_reverse_frag0_hdr_trans()
wifi: rsi: Fix memory leak in rsi_coex_attach()
wifi: rtlwifi: rtl8821ae: don't call kfree_skb() under spin_lock_irqsave()
wifi: rtlwifi: rtl8188ee: don't call kfree_skb() under spin_lock_irqsave()
wifi: rtlwifi: rtl8723be: don't call kfree_skb() under spin_lock_irqsave()
wifi: iwlegacy: common: don't call dev_kfree_skb() under spin_lock_irqsave()
wifi: libertas: fix memory leak in lbs_init_adapter()
wifi: rtl8xxxu: don't call dev_kfree_skb() under spin_lock_irqsave()
wifi: rtw89: 8852c: rfk: correct DACK setting
wifi: rtw89: 8852c: rfk: correct DPK settings
wifi: rtlwifi: Fix global-out-of-bounds bug in _rtl8812ae_phy_set_txpower_limit()
libbpf: Fix btf__align_of() by taking into account field offsets
wifi: ipw2x00: don't call dev_kfree_skb() under spin_lock_irqsave()
wifi: ipw2200: fix memory leak in ipw_wdev_init()
wifi: wilc1000: fix potential memory leak in wilc_mac_xmit()
wifi: wilc1000: add missing unregister_netdev() in wilc_netdev_ifc_init()
wifi: brcmfmac: fix potential memory leak in brcmf_netdev_start_xmit()
wifi: brcmfmac: unmap dma buffer in brcmf_msgbuf_alloc_pktid()
wifi: libertas_tf: don't call kfree_skb() under spin_lock_irqsave()
wifi: libertas: if_usb: don't call kfree_skb() under spin_lock_irqsave()
wifi: libertas: main: don't call kfree_skb() under spin_lock_irqsave()
wifi: libertas: cmdresp: don't call kfree_skb() under spin_lock_irqsave()
wifi: wl3501_cs: don't call kfree_skb() under spin_lock_irqsave()
libbpf: Fix invalid return address register in s390
crypto: x86/ghash - fix unaligned access in ghash_setkey()
ACPICA: Drop port I/O validation for some regions
genirq: Fix the return type of kstat_cpu_irqs_sum()
rcu-tasks: Improve comments explaining tasks_rcu_exit_srcu purpose
rcu-tasks: Remove preemption disablement around srcu_read_[un]lock() calls
rcu-tasks: Fix synchronize_rcu_tasks() VS zap_pid_ns_processes()
lib/mpi: Fix buffer overrun when SG is too long
crypto: ccp - Avoid page allocation failure warning for SEV_GET_ID2
platform/chrome: cros_ec_typec: Update port DP VDO
ACPICA: nsrepair: handle cases without a return value correctly
selftests/xsk: print correct payload for packet dump
selftests/xsk: print correct error codes when exiting
arm64/cpufeature: Fix field sign for DIT hwcap detection
kselftest/arm64: Fix syscall-abi for systems without 128 bit SME
workqueue: Protects wq_unbound_cpumask with wq_pool_attach_mutex
s390/early: fix sclp_early_sccb variable lifetime
s390/vfio-ap: fix an error handling path in vfio_ap_mdev_probe_queue()
x86/signal: Fix the value returned by strict_sas_size()
thermal/drivers/tsens: Drop msm8976-specific defines
thermal/drivers/tsens: Sort out msm8976 vs msm8956 data
thermal/drivers/tsens: fix slope values for msm8939
thermal/drivers/tsens: limit num_sensors to 9 for msm8939
wifi: rtw89: fix potential leak in rtw89_append_probe_req_ie()
wifi: rtw89: Add missing check for alloc_workqueue
wifi: rtl8xxxu: Fix memory leaks with RTL8723BU, RTL8192EU
wifi: orinoco: check return value of hermes_write_wordrec()
thermal/drivers/imx_sc_thermal: Drop empty platform remove function
thermal/drivers/imx_sc_thermal: Fix the loop condition
wifi: ath9k: htc_hst: free skb in ath9k_htc_rx_msg() if there is no callback function
wifi: ath9k: hif_usb: clean up skbs if ath9k_hif_usb_rx_stream() fails
wifi: ath9k: Fix potential stack-out-of-bounds write in ath9k_wmi_rsp_callback()
wifi: ath11k: Fix memory leak in ath11k_peer_rx_frag_setup
wifi: cfg80211: Fix extended KCK key length check in nl80211_set_rekey_data()
ACPI: battery: Fix missing NUL-termination with large strings
selftests/bpf: Fix build errors if CONFIG_NF_CONNTRACK=m
crypto: ccp - Failure on re-initialization due to duplicate sysfs filename
crypto: essiv - Handle EBUSY correctly
crypto: seqiv - Handle EBUSY correctly
powercap: fix possible name leak in powercap_register_zone()
x86/microcode: Add a parameter to microcode_check() to store CPU capabilities
x86/microcode: Check CPU capabilities after late microcode update correctly
x86/microcode: Adjust late loading result reporting message
selftests/bpf: Use consistent build-id type for liburandom_read.so
selftests/bpf: Fix vmtest static compilation error
crypto: xts - Handle EBUSY correctly
leds: led-class: Add missing put_device() to led_put()
s390/bpf: Add expoline to tail calls
wifi: iwlwifi: mei: fix compilation errors in rfkill()
kselftest/arm64: Fix enumeration of systems without 128 bit SME
can: rcar_canfd: Fix R-Car V3U GAFLCFG field accesses
selftests/bpf: Initialize tc in xdp_synproxy
crypto: ccp - Flush the SEV-ES TMR memory before giving it to firmware
bpftool: profile online CPUs instead of possible
wifi: mt76: mt7915: call mt7915_mcu_set_thermal_throttling() only after init_work
wifi: mt76: mt7915: fix memory leak in mt7915_mcu_exit
wifi: mt76: mt7915: fix WED TxS reporting
wifi: mt76: add memory barrier to SDIO queue kick
wifi: mt76: mt7921: fix error code of return in mt7921_acpi_read
net/mlx5: Enhance debug print in page allocation failure
irqchip: Fix refcount leak in platform_irqchip_probe
irqchip/alpine-msi: Fix refcount leak in alpine_msix_init_domains
irqchip/irq-mvebu-gicp: Fix refcount leak in mvebu_gicp_probe
irqchip/ti-sci: Fix refcount leak in ti_sci_intr_irq_domain_probe
s390/mem_detect: fix detect_memory() error handling
s390/vmem: fix empty page tables cleanup under KASAN
s390/boot: cleanup decompressor header files
s390/mem_detect: rely on diag260() if sclp_early_get_memsize() fails
s390/boot: fix mem_detect extended area allocation
net: add sock_init_data_uid()
tun: tun_chr_open(): correctly initialize socket uid
tap: tap_open(): correctly initialize socket uid
OPP: fix error checking in opp_migrate_dentry()
cpufreq: davinci: Fix clk use after free
Bluetooth: hci_conn: Refactor hci_bind_bis() since it always succeeds
Bluetooth: L2CAP: Fix potential user-after-free
Bluetooth: hci_qca: get wakeup status from serdev device handle
net: ipa: generic command param fix
s390: vfio-ap: tighten the NIB validity check
s390/ap: fix status returned by ap_aqic()
s390/ap: fix status returned by ap_qact()
libbpf: Fix alen calculation in libbpf_nla_dump_errormsg()
xen/grant-dma-iommu: Implement a dummy probe_device() callback
rds: rds_rm_zerocopy_callback() correct order for list_add_tail()
crypto: rsa-pkcs1pad - Use akcipher_request_complete
m68k: /proc/hardware should depend on PROC_FS
RISC-V: time: initialize hrtimer based broadcast clock event device
clocksource/drivers/riscv: Patch riscv_clock_next_event() jump before first use
wifi: iwl3945: Add missing check for create_singlethread_workqueue
wifi: iwl4965: Add missing check for create_singlethread_workqueue()
wifi: mwifiex: fix loop iterator in mwifiex_update_ampdu_txwinsize()
selftests/bpf: Fix out-of-srctree build
ACPI: resource: Add IRQ overrides for MAINGEAR Vector Pro 2 models
ACPI: resource: Do IRQ override on all TongFang GMxRGxx
crypto: octeontx2 - Fix objects shared between several modules
crypto: crypto4xx - Call dma_unmap_page when done
wifi: mac80211: move color collision detection report in a delayed work
wifi: mac80211: make rate u32 in sta_set_rate_info_rx()
wifi: mac80211: fix non-MLO station association
wifi: mac80211: Don't translate MLD addresses for multicast
wifi: mac80211: avoid u32_encode_bits() warning
wifi: mac80211: fix off-by-one link setting
tools/lib/thermal: Fix thermal_sampling_exit()
thermal/drivers/hisi: Drop second sensor hi3660
selftests/bpf: Fix map_kptr test.
wifi: mac80211: pass 'sta' to ieee80211_rx_data_set_sta()
bpf: Zeroing allocated object from slab in bpf memory allocator
selftests/bpf: Fix xdp_do_redirect on s390x
can: esd_usb: Move mislocated storage of SJA1000_ECC_SEG bits in case of a bus error
can: esd_usb: Make use of can_change_state() and relocate checking skb for NULL
xsk: check IFF_UP earlier in Tx path
LoongArch, bpf: Use 4 instructions for function address in JIT
bpf: Fix global subprog context argument resolution logic
irqchip/irq-brcmstb-l2: Set IRQ_LEVEL for level triggered interrupts
irqchip/irq-bcm7120-l2: Set IRQ_LEVEL for level triggered interrupts
net/smc: fix potential panic dues to unprotected smc_llc_srv_add_link()
net/smc: fix application data exception
selftests/net: Interpret UDP_GRO cmsg data as an int value
l2tp: Avoid possible recursive deadlock in l2tp_tunnel_register()
net: bcmgenet: fix MoCA LED control
net: lan966x: Fix possible deadlock inside PTP
net/mlx4_en: Introduce flexible array to silence overflow warning
selftest: fib_tests: Always cleanup before exit
sefltests: netdevsim: wait for devlink instance after netns removal
drm: Fix potential null-ptr-deref due to drmm_mode_config_init()
drm/fourcc: Add missing big-endian XRGB1555 and RGB565 formats
drm/bridge: ti-sn65dsi83: Fix delay after reset deassert to match spec
drm: mxsfb: DRM_IMX_LCDIF should depend on ARCH_MXC
drm: mxsfb: DRM_MXSFB should depend on ARCH_MXS || ARCH_MXC
drm/bridge: megachips: Fix error handling in i2c_register_driver()
drm/vkms: Fix memory leak in vkms_init()
drm/vkms: Fix null-ptr-deref in vkms_release()
drm/vc4: dpi: Fix format mapping for RGB565
drm: tidss: Fix pixel format definition
gpu: ipu-v3: common: Add of_node_put() for reference returned by of_graph_get_port_by_id()
drm/vc4: drop all currently held locks if deadlock happens
hwmon: (ftsteutates) Fix scaling of measurements
drm/msm/dpu: check for null return of devm_kzalloc() in dpu_writeback_init()
drm/msm/hdmi: Add missing check for alloc_ordered_workqueue
pinctrl: qcom: pinctrl-msm8976: Correct function names for wcss pins
pinctrl: stm32: Fix refcount leak in stm32_pctrl_get_irq_domain
pinctrl: rockchip: Fix refcount leak in rockchip_pinctrl_parse_groups
drm/vc4: hvs: Set AXI panic modes
drm/vc4: hvs: SCALER_DISPBKGND_AUTOHS is only valid on HVS4
drm/vc4: hvs: Correct interrupt masking bit assignment for HVS5
drm/vc4: hvs: Fix colour order for xRGB1555 on HVS5
drm/vc4: hdmi: Correct interlaced timings again
drm/msm: clean event_thread->worker in case of an error
drm/panel-edp: fix name for IVO product id 854b
scsi: qla2xxx: Fix exchange oversubscription
scsi: qla2xxx: Fix exchange oversubscription for management commands
scsi: qla2xxx: edif: Fix clang warning
ASoC: fsl_sai: initialize is_dsp_mode flag
drm/bridge: tc358767: Set default CLRSIPO count
drm/msm/adreno: Fix null ptr access in adreno_gpu_cleanup()
ALSA: hda/ca0132: minor fix for allocation size
drm/amdgpu: Use the sched from entity for amdgpu_cs trace
drm/msm/gem: Add check for kmalloc
drm/msm/dpu: Disallow unallocated resources to be returned
drm/bridge: lt9611: fix sleep mode setup
drm/bridge: lt9611: fix HPD reenablement
drm/bridge: lt9611: fix polarity programming
drm/bridge: lt9611: fix programming of video modes
drm/bridge: lt9611: fix clock calculation
drm/bridge: lt9611: pass a pointer to the of node
regulator: tps65219: use IS_ERR() to detect an error pointer
drm/mipi-dsi: Fix byte order of 16-bit DCS set/get brightness
drm: exynos: dsi: Fix MIPI_DSI*_NO_* mode flags
drm/msm/dsi: Allow 2 CTRLs on v2.5.0
scsi: ufs: exynos: Fix DMA alignment for PAGE_SIZE != 4096
drm/msm/dpu: sc7180: add missing WB2 clock control
drm/msm: use strscpy instead of strncpy
drm/msm/dpu: Add check for cstate
drm/msm/dpu: Add check for pstates
drm/msm/mdp5: Add check for kzalloc
habanalabs: bugs fixes in timestamps buff alloc
pinctrl: bcm2835: Remove of_node_put() in bcm2835_of_gpio_ranges_fallback()
pinctrl: mediatek: Initialize variable pullen and pullup to zero
pinctrl: mediatek: Initialize variable *buf to zero
gpu: host1x: Fix mask for syncpoint increment register
gpu: host1x: Don't skip assigning syncpoints to channels
drm/tegra: firewall: Check for is_addr_reg existence in IMM check
pinctrl: renesas: rzg2l: Fix configuring the GPIO pins as interrupts
drm/msm/dpu: set pdpu->is_rt_pipe early in dpu_plane_sspp_atomic_update()
drm/mediatek: dsi: Reduce the time of dsi from LP11 to sending cmd
drm/mediatek: Use NULL instead of 0 for NULL pointer
drm/mediatek: Drop unbalanced obj unref
drm/mediatek: mtk_drm_crtc: Add checks for devm_kcalloc
drm/mediatek: Clean dangling pointer on bind error path
ASoC: soc-compress.c: fixup private_data on snd_soc_new_compress()
dt-bindings: display: mediatek: Fix the fallback for mediatek,mt8186-disp-ccorr
gpio: vf610: connect GPIO label to dev name
ASoC: topology: Properly access value coming from topology file
spi: dw_bt1: fix MUX_MMIO dependencies
ASoC: mchp-spdifrx: fix controls which rely on rsr register
ASoC: mchp-spdifrx: fix return value in case completion times out
ASoC: mchp-spdifrx: fix controls that works with completion mechanism
ASoC: mchp-spdifrx: disable all interrupts in mchp_spdifrx_dai_remove()
dm: improve shrinker debug names
regmap: apply reg_base and reg_downshift for single register ops
ASoC: rsnd: fixup #endif position
ASoC: mchp-spdifrx: Fix uninitialized use of mr in mchp_spdifrx_hw_params()
ASoC: dt-bindings: meson: fix gx-card codec node regex
regulator: tps65219: use generic set_bypass()
hwmon: (asus-ec-sensors) add missing mutex path
hwmon: (ltc2945) Handle error case in ltc2945_value_store
ALSA: hda: Fix the control element identification for multiple codecs
drm/amdgpu: fix enum odm_combine_mode mismatch
scsi: mpt3sas: Fix a memory leak
scsi: aic94xx: Add missing check for dma_map_single()
HID: multitouch: Add quirks for flipped axes
HID: retain initial quirks set up when creating HID devices
ASoC: qcom: q6apm-lpass-dai: unprepare stream if its already prepared
ASoC: qcom: q6apm-dai: fix race condition while updating the position pointer
ASoC: qcom: q6apm-dai: Add SNDRV_PCM_INFO_BATCH flag
ASoC: codecs: lpass: register mclk after runtime pm
ASoC: codecs: lpass: fix incorrect mclk rate
drm/amd/display: don't call dc_interrupt_set() for disabled crtcs
HID: logitech-hidpp: Hard-code HID++ 1.0 fast scroll support
spi: bcm63xx-hsspi: Fix multi-bit mode setting
hwmon: (mlxreg-fan) Return zero speed for broken fan
ASoC: tlv320adcx140: fix 'ti,gpio-config' DT property init
dm: remove flush_scheduled_work() during local_exit()
nfs4trace: fix state manager flag printing
NFS: fix disabling of swap
spi: synquacer: Fix timeout handling in synquacer_spi_transfer_one()
ASoC: soc-dapm.h: fixup warning struct snd_pcm_substream not declared
HID: bigben: use spinlock to protect concurrent accesses
HID: bigben_worker() remove unneeded check on report_field
HID: bigben: use spinlock to safely schedule workers
hid: bigben_probe(): validate report count
ALSA: hda/hdmi: Register with vga_switcheroo on Dual GPU Macbooks
drm/shmem-helper: Fix locking for drm_gem_shmem_get_pages_sgt()
NFSD: enhance inter-server copy cleanup
NFSD: fix leaked reference count of nfsd4_ssc_umount_item
nfsd: fix race to check ls_layouts
nfsd: clean up potential nfsd_file refcount leaks in COPY codepath
NFSD: fix problems with cleanup on errors in nfsd4_copy
nfsd: fix courtesy client with deny mode handling in nfs4_upgrade_open
nfsd: don't fsync nfsd_files on last close
NFSD: copy the whole verifier in nfsd_copy_write_verifier
cifs: Fix lost destroy smbd connection when MR allocate failed
cifs: Fix warning and UAF when destroy the MR list
cifs: use tcon allocation functions even for dummy tcon
gfs2: jdata writepage fix
perf llvm: Fix inadvertent file creation
leds: led-core: Fix refcount leak in of_led_get()
leds: is31fl319x: Wrap mutex_destroy() for devm_add_action_or_rest()
leds: simatic-ipc-leds-gpio: Make sure we have the GPIO providing driver
tools/tracing/rtla: osnoise_hist: use total duration for average calculation
perf inject: Use perf_data__read() for auxtrace
perf intel-pt: Do not try to queue auxtrace data on pipe
perf test bpf: Skip test if kernel-debuginfo is not present
perf tools: Fix auto-complete on aarch64
sparc: allow PM configs for sparc32 COMPILE_TEST
selftests: find echo binary to use -ne options
selftests/ftrace: Fix bash specific "==" operator
selftests: use printf instead of echo -ne
perf record: Fix segfault with --overwrite and --max-size
printf: fix errname.c list
perf tests stat_all_metrics: Change true workload to sleep workload for system wide check
objtool: add UACCESS exceptions for __tsan_volatile_read/write
mfd: cs5535: Don't build on UML
mfd: pcf50633-adc: Fix potential memleak in pcf50633_adc_async_read()
dmaengine: idxd: Set traffic class values in GRPCFG on DSA 2.0
RDMA/erdma: Fix refcount leak in erdma_mmap
dmaengine: HISI_DMA should depend on ARCH_HISI
RDMA/hns: Fix refcount leak in hns_roce_mmap
iio: light: tsl2563: Do not hardcode interrupt trigger type
usb: gadget: fusb300_udc: free irq on the error path in fusb300_probe()
i2c: designware: fix i2c_dw_clk_rate() return size to be u32
soundwire: cadence: Don't overflow the command FIFOs
driver core: fix potential null-ptr-deref in device_add()
kobject: modify kobject_get_path() to take a const *
kobject: Fix slab-out-of-bounds in fill_kobj_path()
alpha/boot/tools/objstrip: fix the check for ELF header
media: uvcvideo: Check for INACTIVE in uvc_ctrl_is_accessible()
media: uvcvideo: Implement mask for V4L2_CTRL_TYPE_MENU
media: uvcvideo: Refactor uvc_ctrl_mappings_uvcXX
media: uvcvideo: Refactor power_line_frequency_controls_limited
coresight: etm4x: Fix accesses to TRCSEQRSTEVR and TRCSEQSTR
coresight: cti: Prevent negative values of enable count
coresight: cti: Add PM runtime call in enable_store
usb: typec: intel_pmc_mux: Don't leak the ACPI device reference count
PCI/IOV: Enlarge virtfn sysfs name buffer
PCI: switchtec: Return -EFAULT for copy_to_user() errors
PCI: endpoint: pci-epf-vntb: Clean up kernel_doc warning
PCI: endpoint: pci-epf-vntb: Add epf_ntb_mw_bar_clear() num_mws kernel-doc
hwtracing: hisi_ptt: Only add the supported devices to the filters list
tty: serial: fsl_lpuart: disable Rx/Tx DMA in lpuart32_shutdown()
tty: serial: fsl_lpuart: clear LPUART Status Register in lpuart32_shutdown()
serial: tegra: Add missing clk_disable_unprepare() in tegra_uart_hw_init()
Revert "char: pcmcia: cm4000_cs: Replace mdelay with usleep_range in set_protocol"
eeprom: idt_89hpesx: Fix error handling in idt_init()
applicom: Fix PCI device refcount leak in applicom_init()
firmware: stratix10-svc: add missing gen_pool_destroy() in stratix10_svc_drv_probe()
firmware: stratix10-svc: fix error handle while alloc/add device failed
VMCI: check context->notify_page after call to get_user_pages_fast() to avoid GPF
mei: pxp: Use correct macros to initialize uuid_le
misc/mei/hdcp: Use correct macros to initialize uuid_le
misc: fastrpc: Fix an error handling path in fastrpc_rpmsg_probe()
driver core: fix resource leak in device_add()
driver core: location: Free struct acpi_pld_info *pld before return false
drivers: base: transport_class: fix possible memory leak
drivers: base: transport_class: fix resource leak when transport_add_device() fails
firmware: dmi-sysfs: Fix null-ptr-deref in dmi_sysfs_register_handle
fotg210-udc: Add missing completion handler
dmaengine: dw-edma: Fix missing src/dst address of interleaved xfers
fpga: microchip-spi: move SPI I/O buffers out of stack
fpga: microchip-spi: rewrite status polling in a time measurable way
usb: early: xhci-dbc: Fix a potential out-of-bound memory access
tty: serial: fsl_lpuart: Fix the wrong RXWATER setting for rx dma case
RDMA/cxgb4: add null-ptr-check after ip_dev_find()
usb: musb: mediatek: don't unregister something that wasn't registered
usb: gadget: configfs: Restrict symlink creation is UDC already binded
phy: mediatek: remove temporary variable @mask_
PCI: mt7621: Delay phy ports initialization
iommu: dart: Add suspend/resume support
iommu: dart: Support >64 stream IDs
iommu/dart: Fix apple_dart_device_group for PCI groups
iommu/vt-d: Set No Execute Enable bit in PASID table entry
power: supply: remove faulty cooling logic
RDMA/cxgb4: Fix potential null-ptr-deref in pass_establish()
usb: max-3421: Fix setting of I/O pins
RDMA/irdma: Cap MSIX used to online CPUs + 1
serial: fsl_lpuart: fix RS485 RTS polariy inverse issue
tty: serial: imx: Handle RS485 DE signal active high
tty: serial: imx: disable Ageing Timer interrupt request irq
driver core: fw_devlink: Add DL_FLAG_CYCLE support to device links
driver core: fw_devlink: Don't purge child fwnode's consumer links
driver core: fw_devlink: Allow marking a fwnode link as being part of a cycle
driver core: fw_devlink: Consolidate device link flag computation
driver core: fw_devlink: Improve check for fwnode with no device/driver
driver core: fw_devlink: Make cycle detection more robust
mtd: mtdpart: Don't create platform device that'll never probe
usb: host: fsl-mph-dr-of: reuse device_set_of_node_from_dev
dmaengine: dw-edma: Fix readq_ch() return value truncation
PCI: Fix dropping valid root bus resources with .end = zero
phy: rockchip-typec: fix tcphy_get_mode error case
PCI: qcom: Fix host-init error handling
iw_cxgb4: Fix potential NULL dereference in c4iw_fill_res_cm_id_entry()
iommu: Fix error unwind in iommu_group_alloc()
iommu/amd: Do not identity map v2 capable device when snp is enabled
dmaengine: sf-pdma: pdma_desc memory leak fix
dmaengine: dw-axi-dmac: Do not dereference NULL structure
dmaengine: ptdma: check for null desc before calling pt_cmd_callback
iommu/vt-d: Fix error handling in sva enable/disable paths
iommu/vt-d: Allow to use flush-queue when first level is default
RDMA/rxe: cleanup some error handling in rxe_verbs.c
RDMA/rxe: Fix missing memory barriers in rxe_queue.h
IB/hfi1: Fix math bugs in hfi1_can_pin_pages()
IB/hfi1: Fix sdma.h tx->num_descs off-by-one errors
Revert "remoteproc: qcom_q6v5_mss: map/unmap metadata region before/after use"
remoteproc: qcom_q6v5_mss: Use a carveout to authenticate modem headers
media: ti: cal: fix possible memory leak in cal_ctx_create()
media: platform: ti: Add missing check for devm_regulator_get
media: imx: imx7-media-csi: fix missing clk_disable_unprepare() in imx7_csi_init()
powerpc: Remove linker flag from KBUILD_AFLAGS
s390/vdso: Drop '-shared' from KBUILD_CFLAGS_64
builddeb: clean generated package content
media: max9286: Fix memleak in max9286_v4l2_register()
media: ov2740: Fix memleak in ov2740_init_controls()
media: ov5675: Fix memleak in ov5675_init_controls()
media: ov5640: Fix soft reset sequence and timings
media: ov5640: Handle delays when no reset_gpio set
media: mc: Get media_device directly from pad
media: i2c: ov772x: Fix memleak in ov772x_probe()
media: i2c: imx219: Split common registers from mode tables
media: i2c: imx219: Fix binning for RAW8 capture
media: platform: mtk-mdp3: Fix return value check in mdp_probe()
media: camss: csiphy-3ph: avoid undefined behavior
media: platform: mtk-mdp3: remove unused VIDEO_MEDIATEK_VPU config
media: platform: mtk-mdp3: fix Kconfig dependencies
media: v4l2-jpeg: correct the skip count in jpeg_parse_app14_data
media: v4l2-jpeg: ignore the unknown APP14 marker
media: hantro: Fix JPEG encoder ENUM_FRMSIZE on RK3399
media: imx-jpeg: Apply clk_bulk api instead of operating specific clk
media: amphion: correct the unspecified color space
media: drivers/media/v4l2-core/v4l2-h264 : add detection of null pointers
media: rc: Fix use-after-free bugs caused by ene_tx_irqsim()
media: atomisp: Only set default_run_mode on first open of a stream/asd
media: i2c: ov7670: 0 instead of -EINVAL was returned
media: usb: siano: Fix use after free bugs caused by do_submit_urb
media: saa7134: Use video_unregister_device for radio_dev
rpmsg: glink: Avoid infinite loop on intent for missing channel
rpmsg: glink: Release driver_override
ARM: OMAP2+: omap4-common: Fix refcount leak bug
arm64: dts: qcom: msm8996: Add additional A2NoC clocks
udf: Define EFSCORRUPTED error code
context_tracking: Fix noinstr vs KASAN
exit: Detect and fix irq disabled state in oops
ARM: dts: exynos: Use Exynos5420 compatible for the MIPI video phy
fs: Use CHECK_DATA_CORRUPTION() when kernel bugs are detected
blk-iocost: fix divide by 0 error in calc_lcoefs()
blk-cgroup: dropping parent refcount after pd_free_fn() is done
blk-cgroup: synchronize pd_free_fn() from blkg_free_workfn() and blkcg_deactivate_policy()
trace/blktrace: fix memory leak with using debugfs_lookup()
btrfs: scrub: improve tree block error reporting
arm64: zynqmp: Enable hs termination flag for USB dwc3 controller
cpuidle, intel_idle: Fix CPUIDLE_FLAG_INIT_XSTATE
x86/fpu: Don't set TIF_NEED_FPU_LOAD for PF_IO_WORKER threads
cpuidle: drivers: firmware: psci: Dont instrument suspend code
cpuidle: lib/bug: Disable rcu_is_watching() during WARN/BUG
perf/x86/intel/uncore: Add Meteor Lake support
wifi: ath9k: Fix use-after-free in ath9k_hif_usb_disconnect()
wifi: ath11k: fix monitor mode bringup crash
wifi: brcmfmac: Fix potential stack-out-of-bounds in brcmf_c_preinit_dcmds()
rcu: Make RCU_LOCKDEP_WARN() avoid early lockdep checks
rcu: Suppress smp_processor_id() complaint in synchronize_rcu_expedited_wait()
srcu: Delegate work to the boot cpu if using SRCU_SIZE_SMALL
rcu-tasks: Make rude RCU-Tasks work well with CPU hotplug
rcu-tasks: Handle queue-shrink/callback-enqueue race condition
wifi: ath11k: debugfs: fix to work with multiple PCI devices
thermal: intel: Fix unsigned comparison with less than zero
timers: Prevent union confusion from unexpected restart_syscall()
x86/bugs: Reset speculation control settings on init
bpftool: Always disable stack protection for BPF objects
wifi: brcmfmac: ensure CLM version is null-terminated to prevent stack-out-of-bounds
wifi: mt7601u: fix an integer underflow
inet: fix fast path in __inet_hash_connect()
ice: restrict PTP HW clock freq adjustments to 100, 000, 000 PPB
ice: add missing checks for PF vsi type
ACPI: Don't build ACPICA with '-Os'
bpf, docs: Fix modulo zero, division by zero, overflow, and underflow
thermal: intel: intel_pch: Add support for Wellsburg PCH
clocksource: Suspend the watchdog temporarily when high read latency detected
crypto: hisilicon: Wipe entire pool on error
net: bcmgenet: Add a check for oversized packets
m68k: Check syscall_trace_enter() return code
s390/mm,ptdump: avoid Kasan vs Memcpy Real markers swapping
netfilter: nf_tables: NULL pointer dereference in nf_tables_updobj()
can: isotp: check CAN address family in isotp_bind()
gcc-plugins: drop -std=gnu++11 to fix GCC 13 build
tools/power/x86/intel-speed-select: Add Emerald Rapid quirk
wifi: mt76: dma: free rx_head in mt76_dma_rx_cleanup
ACPI: video: Fix Lenovo Ideapad Z570 DMI match
net/mlx5: fw_tracer: Fix debug print
coda: Avoid partial allocation of sig_inputArgs
uaccess: Add minimum bounds check on kernel buffer size
s390/idle: mark arch_cpu_idle() noinstr
time/debug: Fix memory leak with using debugfs_lookup()
PM: domains: fix memory leak with using debugfs_lookup()
PM: EM: fix memory leak with using debugfs_lookup()
Bluetooth: Fix issue with Actions Semi ATS2851 based devices
Bluetooth: btusb: Add new PID/VID 0489:e0f2 for MT7921
Bluetooth: btusb: Add VID:PID 13d3:3529 for Realtek RTL8821CE
wifi: rtw89: debug: avoid invalid access on RTW89_DBG_SEL_MAC_30
hv_netvsc: Check status in SEND_RNDIS_PKT completion message
s390/kfence: fix page fault reporting
devlink: Fix TP_STRUCT_entry in trace of devlink health report
scm: add user copy checks to put_cmsg()
drm: panel-orientation-quirks: Add quirk for Lenovo Yoga Tab 3 X90F
drm: panel-orientation-quirks: Add quirk for DynaBook K50
drm/amd/display: Reduce expected sdp bandwidth for dcn321
drm/amd/display: Revert Reduce delay when sink device not able to ACK 00340h write
drm/amd/display: Fix potential null-deref in dm_resume
drm/omap: dsi: Fix excessive stack usage
HID: Add Mapping for System Microphone Mute
drm/tiny: ili9486: Do not assume 8-bit only SPI controllers
drm/amd/display: Defer DIG FIFO disable after VID stream enable
drm/radeon: free iio for atombios when driver shutdown
drm/amd: Avoid BUG() for case of SRIOV missing IP version
drm/amdkfd: Page aligned memory reserve size
scsi: lpfc: Fix use-after-free KFENCE violation during sysfs firmware write
Revert "fbcon: don't lose the console font across generic->chip driver switch"
drm/amd: Avoid ASSERT for some message failures
drm: amd: display: Fix memory leakage
drm/amd/display: fix mapping to non-allocated address
HID: uclogic: Add frame type quirk
HID: uclogic: Add battery quirk
HID: uclogic: Add support for XP-PEN Deco Pro SW
HID: uclogic: Add support for XP-PEN Deco Pro MW
drm/msm/dsi: Add missing check for alloc_ordered_workqueue
drm: rcar-du: Add quirk for H3 ES1.x pclk workaround
drm: rcar-du: Fix setting a reserved bit in DPLLCR
drm/drm_print: correct format problem
drm/amd/display: Set hvm_enabled flag for S/G mode
habanalabs: extend fatal messages to contain PCI info
habanalabs: fix bug in timestamps registration code
docs/scripts/gdb: add necessary make scripts_gdb step
drm/msm/dpu: Add DSC hardware blocks to register snapshot
ASoC: soc-compress: Reposition and add pcm_mutex
ASoC: kirkwood: Iterate over array indexes instead of using pointer math
regulator: max77802: Bounds check regulator id against opmode
regulator: s5m8767: Bounds check id indexing into arrays
Revert "drm/amdgpu: TA unload messages are not actually sent to psp when amdgpu is uninstalled"
drm/amd/display: fix FCLK pstate change underflow
gfs2: Improve gfs2_make_fs_rw error handling
hwmon: (coretemp) Simplify platform device handling
hwmon: (nct6775) Directly call ASUS ACPI WMI method
hwmon: (nct6775) B650/B660/X670 ASUS boards support
pinctrl: at91: use devm_kasprintf() to avoid potential leaks
drm/amd/display: Do not commit pipe when updating DRR
scsi: snic: Fix memory leak with using debugfs_lookup()
scsi: ufs: core: Fix device management cmd timeout flow
HID: logitech-hidpp: Don't restart communication if not necessary
drm/amd/display: Enable P-state validation checks for DCN314
drm: panel-orientation-quirks: Add quirk for Lenovo IdeaPad Duet 3 10IGL5
drm/amd/display: Disable HUBP/DPP PG on DCN314 for now
dm thin: add cond_resched() to various workqueue loops
dm cache: add cond_resched() to various workqueue loops
nfsd: zero out pointers after putting nfsd_files on COPY setup error
nfsd: don't hand out delegation on setuid files being opened for write
cifs: prevent data race in smb2_reconnect()
drm/shmem-helper: Revert accidental non-GPL export
driver core: fw_devlink: Avoid spurious error message
wifi: rtl8xxxu: fixing transmisison failure for rtl8192eu
scsi: mpt3sas: Remove usage of dma_get_required_mask() API
firmware: coreboot: framebuffer: Ignore reserved pixel color bits
block: don't allow multiple bios for IOCB_NOWAIT issue
block: clear bio->bi_bdev when putting a bio back in the cache
block: be a bit more careful in checking for NULL bdev while polling
rtc: pm8xxx: fix set-alarm race
ipmi: ipmb: Fix the MODULE_PARM_DESC associated to 'retry_time_ms'
ipmi:ssif: resend_msg() cannot fail
ipmi_ssif: Rename idle state and check
io_uring: Replace 0-length array with flexible array
io_uring: use user visible tail in io_uring_poll()
io_uring: handle TIF_NOTIFY_RESUME when checking for task_work
io_uring: add a conditional reschedule to the IOPOLL cancelation loop
io_uring: add reschedule point to handle_tw_list()
io_uring/rsrc: disallow multi-source reg buffers
io_uring: remove MSG_NOSIGNAL from recvmsg
io_uring: fix fget leak when fs don't support nowait buffered read
s390/extmem: return correct segment type in __segment_load()
s390: discard .interp section
s390/kprobes: fix irq mask clobbering on kprobe reenter from post_handler
s390/kprobes: fix current_kprobe never cleared after kprobes reenter
KVM: s390: disable migration mode when dirty tracking is disabled
cifs: Fix uninitialized memory read in smb3_qfs_tcon()
cifs: Fix uninitialized memory reads for oparms.mode
cifs: fix mount on old smb servers
cifs: introduce cifs_io_parms in smb2_async_writev()
cifs: split out smb3_use_rdma_offload() helper
cifs: don't try to use rdma offload on encrypted connections
cifs: Check the lease context if we actually got a lease
cifs: return a single-use cfid if we did not get a lease
scsi: mpi3mr: Fix missing mrioc->evtack_cmds initialization
scsi: mpi3mr: Fix issues in mpi3mr_get_all_tgt_info()
scsi: mpi3mr: Remove unnecessary memcpy() to alltgt_info->dmi
btrfs: hold block group refcount during async discard
locking/rwsem: Prevent non-first waiter from spinning in down_write() slowpath
ksmbd: fix wrong data area length for smb2 lock request
ksmbd: do not allow the actual frame length to be smaller than the rfc1002 length
ksmbd: fix possible memory leak in smb2_lock()
torture: Fix hang during kthread shutdown phase
ARM: dts: exynos: correct HDMI phy compatible in Exynos4
io_uring: mark task TASK_RUNNING before handling resume/task work
hfs: fix missing hfs_bnode_get() in __hfs_bnode_create
fs: hfsplus: fix UAF issue in hfsplus_put_super
exfat: fix reporting fs error when reading dir beyond EOF
exfat: fix unexpected EOF while reading dir
exfat: redefine DIR_DELETED as the bad cluster number
exfat: fix inode->i_blocks for non-512 byte sector size device
fs: dlm: don't set stop rx flag after node reset
fs: dlm: move sending fin message into state change handling
fs: dlm: send FIN ack back in right cases
f2fs: fix information leak in f2fs_move_inline_dirents()
f2fs: retry to update the inode page given data corruption
f2fs: fix cgroup writeback accounting with fs-layer encryption
f2fs: fix kernel crash due to null io->bio
ocfs2: fix defrag path triggering jbd2 ASSERT
ocfs2: fix non-auto defrag path not working issue
fs/cramfs/inode.c: initialize file_ra_state
selftests/landlock: Skip overlayfs tests when not supported
selftests/landlock: Test ptrace as much as possible with Yama
udf: Truncate added extents on failed expansion
udf: Do not bother merging very long extents
udf: Do not update file length for failed writes to inline files
udf: Preserve link count of system files
udf: Detect system inodes linked into directory hierarchy
udf: Fix file corruption when appending just after end of preallocated extent
md: don't update recovery_cp when curr_resync is ACTIVE
RDMA/siw: Fix user page pinning accounting
KVM: Destroy target device if coalesced MMIO unregistration fails
KVM: VMX: Fix crash due to uninitialized current_vmcs
KVM: Register /dev/kvm as the _very_ last thing during initialization
KVM: x86: Purge "highest ISR" cache when updating APICv state
KVM: x86: Blindly get current x2APIC reg value on "nodecode write" traps
KVM: x86: Don't inhibit APICv/AVIC on xAPIC ID "change" if APIC is disabled
KVM: x86: Don't inhibit APICv/AVIC if xAPIC ID mismatch is due to 32-bit ID
KVM: SVM: Flush the "current" TLB when activating AVIC
KVM: SVM: Process ICR on AVIC IPI delivery failure due to invalid target
KVM: SVM: Don't put/load AVIC when setting virtual APIC mode
KVM: x86: Inject #GP if WRMSR sets reserved bits in APIC Self-IPI
KVM: x86: Inject #GP on x2APIC WRMSR that sets reserved bits 63:32
KVM: SVM: Fix potential overflow in SEV's send|receive_update_data()
KVM: SVM: hyper-v: placate modpost section mismatch error
selftests: x86: Fix incorrect kernel headers search path
x86/virt: Force GIF=1 prior to disabling SVM (for reboot flows)
x86/crash: Disable virt in core NMI crash handler to avoid double shootdown
x86/reboot: Disable virtualization in an emergency if SVM is supported
x86/reboot: Disable SVM, not just VMX, when stopping CPUs
x86/kprobes: Fix __recover_optprobed_insn check optimizing logic
x86/kprobes: Fix arch_check_optimized_kprobe check within optimized_kprobe range
x86/microcode/amd: Remove load_microcode_amd()'s bsp parameter
x86/microcode/AMD: Add a @cpu parameter to the reloading functions
x86/microcode/AMD: Fix mixed steppings support
x86/speculation: Allow enabling STIBP with legacy IBRS
Documentation/hw-vuln: Document the interaction between IBRS and STIBP
virt/sev-guest: Return -EIO if certificate buffer is not large enough
brd: mark as nowait compatible
brd: return 0/-error from brd_insert_page()
brd: check for REQ_NOWAIT and set correct page allocation mask
ima: fix error handling logic when file measurement failed
ima: Align ima_file_mmap() parameters with mmap_file LSM hook
selftests/powerpc: Fix incorrect kernel headers search path
selftests/ftrace: Fix eprobe syntax test case to check filter support
selftests: sched: Fix incorrect kernel headers search path
selftests: core: Fix incorrect kernel headers search path
selftests: pid_namespace: Fix incorrect kernel headers search path
selftests: arm64: Fix incorrect kernel headers search path
selftests: clone3: Fix incorrect kernel headers search path
selftests: pidfd: Fix incorrect kernel headers search path
selftests: membarrier: Fix incorrect kernel headers search path
selftests: kcmp: Fix incorrect kernel headers search path
selftests: media_tests: Fix incorrect kernel headers search path
selftests: gpio: Fix incorrect kernel headers search path
selftests: filesystems: Fix incorrect kernel headers search path
selftests: user_events: Fix incorrect kernel headers search path
selftests: ptp: Fix incorrect kernel headers search path
selftests: sync: Fix incorrect kernel headers search path
selftests: rseq: Fix incorrect kernel headers search path
selftests: move_mount_set_group: Fix incorrect kernel headers search path
selftests: mount_setattr: Fix incorrect kernel headers search path
selftests: perf_events: Fix incorrect kernel headers search path
selftests: ipc: Fix incorrect kernel headers search path
selftests: futex: Fix incorrect kernel headers search path
selftests: drivers: Fix incorrect kernel headers search path
selftests: dmabuf-heaps: Fix incorrect kernel headers search path
selftests: vm: Fix incorrect kernel headers search path
selftests: seccomp: Fix incorrect kernel headers search path
irqdomain: Fix association race
irqdomain: Fix disassociation race
irqdomain: Look for existing mapping only once
irqdomain: Drop bogus fwspec-mapping error handling
irqdomain: Refactor __irq_domain_alloc_irqs()
irqdomain: Fix mapping-creation race
irqdomain: Fix domain registration race
crypto: qat - fix out-of-bounds read
mm/damon/paddr: fix missing folio_put()
ALSA: ice1712: Do not left ice->gpio_mutex locked in aureon_add_controls()
ALSA: hda/realtek: Add quirk for HP EliteDesk 800 G6 Tower PC
jbd2: fix data missing when reusing bh which is ready to be checkpointed
ext4: optimize ea_inode block expansion
ext4: refuse to create ea block when umounted
cxl/pmem: Fix nvdimm registration races
mtd: spi-nor: sfdp: Fix index value for SCCR dwords
mtd: spi-nor: spansion: Consider reserved bits in CFR5 register
mtd: spi-nor: Fix shift-out-of-bounds in spi_nor_set_erase_type
dm: send just one event on resize, not two
dm: add cond_resched() to dm_wq_work()
dm: add cond_resched() to dm_wq_requeue_work()
wifi: rtw88: use RTW_FLAG_POWERON flag to prevent to power on/off twice
wifi: rtl8xxxu: Use a longer retry limit of 48
wifi: ath11k: allow system suspend to survive ath11k
wifi: cfg80211: Fix use after free for wext
wifi: cfg80211: Set SSID if it is not already set
cpuidle: add ARCH_SUSPEND_POSSIBLE dependencies
qede: fix interrupt coalescing configuration
thermal: intel: powerclamp: Fix cur_state for multi package system
dm flakey: fix logic when corrupting a bio
dm cache: free background tracker's queued work in btracker_destroy
dm flakey: don't corrupt the zero page
dm flakey: fix a bug with 32-bit highmem systems
hwmon: (peci/cputemp) Fix off-by-one in coretemp_label allocation
hwmon: (nct6775) Fix incorrect parenthesization in nct6775_write_fan_div()
ARM: dts: qcom: sdx65: Add Qcom SMMU-500 as the fallback for IOMMU node
ARM: dts: qcom: sdx55: Add Qcom SMMU-500 as the fallback for IOMMU node
ARM: dts: exynos: correct TMU phandle in Exynos4210
ARM: dts: exynos: correct TMU phandle in Exynos4
ARM: dts: exynos: correct TMU phandle in Odroid XU3 family
ARM: dts: exynos: correct TMU phandle in Exynos5250
ARM: dts: exynos: correct TMU phandle in Odroid XU
ARM: dts: exynos: correct TMU phandle in Odroid HC1
arm64: mm: hugetlb: Disable HUGETLB_PAGE_OPTIMIZE_VMEMMAP
fuse: add inode/permission checks to fileattr_get/fileattr_set
rbd: avoid use-after-free in do_rbd_add() when rbd_dev_create() fails
ceph: update the time stamps and try to drop the suid/sgid
regulator: core: Use ktime_get_boottime() to determine how long a regulator was off
panic: fix the panic_print NMI backtrace setting
mm/hwpoison: convert TTU_IGNORE_HWPOISON to TTU_HWPOISON
alpha: fix FEN fault handling
dax/kmem: Fix leak of memory-hotplug resources
mips: fix syscall_get_nr
media: ipu3-cio2: Fix PM runtime usage_count in driver unbind
remoteproc/mtk_scp: Move clk ops outside send_lock
docs: gdbmacros: print newest record
mm: memcontrol: deprecate charge moving
mm/thp: check and bail out if page in deferred queue already
ktest.pl: Give back console on Ctrt^C on monitor
kprobes: Fix to handle forcibly unoptimized kprobes on freeing_list
ktest.pl: Fix missing "end_monitor" when machine check fails
ktest.pl: Add RUN_TIMEOUT option with default unlimited
memory tier: release the new_memtier in find_create_memory_tier()
ring-buffer: Handle race between rb_move_tail and rb_check_pages
tools/bootconfig: fix single & used for logical condition
tracing/eprobe: Fix to add filter on eprobe description in README file
iommu/amd: Add a length limitation for the ivrs_acpihid command-line parameter
iommu/amd: Improve page fault error reporting
scsi: aacraid: Allocate cmd_priv with scsicmd
scsi: qla2xxx: Fix link failure in NPIV environment
scsi: qla2xxx: Check if port is online before sending ELS
scsi: qla2xxx: Fix DMA-API call trace on NVMe LS requests
scsi: qla2xxx: Remove unintended flag clearing
scsi: qla2xxx: Fix erroneous link down
scsi: qla2xxx: Remove increment of interface err cnt
scsi: ses: Don't attach if enclosure has no components
scsi: ses: Fix slab-out-of-bounds in ses_enclosure_data_process()
scsi: ses: Fix possible addl_desc_ptr out-of-bounds accesses
scsi: ses: Fix possible desc_ptr out-of-bounds accesses
scsi: ses: Fix slab-out-of-bounds in ses_intf_remove()
RISC-V: add a spin_shadow_stack declaration
riscv: Avoid enabling interrupts in die()
riscv: mm: fix regression due to update_mmu_cache change
riscv: jump_label: Fixup unaligned arch_static_branch function
riscv, mm: Perform BPF exhandler fixup on page fault
riscv: ftrace: Remove wasted nops for !RISCV_ISA_C
riscv: ftrace: Reduce the detour code size to half
MIPS: DTS: CI20: fix otg power gpio
PCI/PM: Observe reset delay irrespective of bridge_d3
PCI: Unify delay handling for reset and resume
PCI: hotplug: Allow marking devices as disconnected during bind/unbind
PCI: Avoid FLR for AMD FCH AHCI adapters
PCI/DPC: Await readiness of secondary bus after reset
bus: mhi: ep: Only send -ENOTCONN status if client driver is available
bus: mhi: ep: Move chan->lock to the start of processing queued ch ring
bus: mhi: ep: Save channel state locally during suspend and resume
iommu/vt-d: Avoid superfluous IOTLB tracking in lazy mode
iommu/vt-d: Fix PASID directory pointer coherency
vfio/type1: exclude mdevs from VFIO_UPDATE_VADDR
vfio/type1: prevent underflow of locked_vm via exec()
vfio/type1: track locked_vm per dma
vfio/type1: restore locked_vm
drm/amd: Fix initialization for nbio 7.5.1
drm/i915/quirks: Add inverted backlight quirk for HP 14-r206nv
drm/radeon: Fix eDP for single-display iMac11,2
drm/i915: Don't use stolen memory for ring buffers with LLC
drm/i915: Don't use BAR mappings for ring buffers with LLC
drm/gud: Fix UBSAN warning
drm/edid: fix AVI infoframe aspect ratio handling
drm/edid: fix parsing of 3D modes from HDMI VSDB
qede: avoid uninitialized entries in coal_entry array
brd: use radix_tree_maybe_preload instead of radix_tree_preload
sbitmap: Advance the queue index before waking up a queue
wait: Return number of exclusive waiters awaken
sbitmap: Try each queue to wake up at least one waiter
kbuild: Port silent mode detection to future gnu make.
net: avoid double iput when sock_alloc_file fails
Linux 6.1.16
Change-Id: I705caf70ee547e6d55f38d133bdcd50713aed745
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
3157 lines
74 KiB
C
3157 lines
74 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
|
|
* policies)
|
|
*/
|
|
|
|
#include <trace/hooks/sched.h>
|
|
|
|
int sched_rr_timeslice = RR_TIMESLICE;
|
|
/* More than 4 hours if BW_SHIFT equals 20. */
|
|
static const u64 max_rt_runtime = MAX_BW;
|
|
|
|
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
|
|
|
|
struct rt_bandwidth def_rt_bandwidth;
|
|
|
|
/*
|
|
* period over which we measure -rt task CPU usage in us.
|
|
* default: 1s
|
|
*/
|
|
unsigned int sysctl_sched_rt_period = 1000000;
|
|
|
|
/*
|
|
* part of the period that we allow rt tasks to run in us.
|
|
* default: 0.95s
|
|
*/
|
|
int sysctl_sched_rt_runtime = 950000;
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
|
|
static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
|
|
size_t *lenp, loff_t *ppos);
|
|
static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
|
|
size_t *lenp, loff_t *ppos);
|
|
static struct ctl_table sched_rt_sysctls[] = {
|
|
{
|
|
.procname = "sched_rt_period_us",
|
|
.data = &sysctl_sched_rt_period,
|
|
.maxlen = sizeof(unsigned int),
|
|
.mode = 0644,
|
|
.proc_handler = sched_rt_handler,
|
|
},
|
|
{
|
|
.procname = "sched_rt_runtime_us",
|
|
.data = &sysctl_sched_rt_runtime,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = sched_rt_handler,
|
|
},
|
|
{
|
|
.procname = "sched_rr_timeslice_ms",
|
|
.data = &sysctl_sched_rr_timeslice,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = sched_rr_handler,
|
|
},
|
|
{}
|
|
};
|
|
|
|
static int __init sched_rt_sysctl_init(void)
|
|
{
|
|
register_sysctl_init("kernel", sched_rt_sysctls);
|
|
return 0;
|
|
}
|
|
late_initcall(sched_rt_sysctl_init);
|
|
#endif
|
|
|
|
static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
|
|
{
|
|
struct rt_bandwidth *rt_b =
|
|
container_of(timer, struct rt_bandwidth, rt_period_timer);
|
|
int idle = 0;
|
|
int overrun;
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
for (;;) {
|
|
overrun = hrtimer_forward_now(timer, rt_b->rt_period);
|
|
if (!overrun)
|
|
break;
|
|
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
idle = do_sched_rt_period_timer(rt_b, overrun);
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
}
|
|
if (idle)
|
|
rt_b->rt_period_active = 0;
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
|
|
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
|
|
}
|
|
|
|
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
|
|
{
|
|
rt_b->rt_period = ns_to_ktime(period);
|
|
rt_b->rt_runtime = runtime;
|
|
|
|
raw_spin_lock_init(&rt_b->rt_runtime_lock);
|
|
|
|
hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
|
|
HRTIMER_MODE_REL_HARD);
|
|
rt_b->rt_period_timer.function = sched_rt_period_timer;
|
|
}
|
|
|
|
static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
|
|
{
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
if (!rt_b->rt_period_active) {
|
|
rt_b->rt_period_active = 1;
|
|
/*
|
|
* SCHED_DEADLINE updates the bandwidth, as a run away
|
|
* RT task with a DL task could hog a CPU. But DL does
|
|
* not reset the period. If a deadline task was running
|
|
* without an RT task running, it can cause RT tasks to
|
|
* throttle when they start up. Kick the timer right away
|
|
* to update the period.
|
|
*/
|
|
hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
|
|
hrtimer_start_expires(&rt_b->rt_period_timer,
|
|
HRTIMER_MODE_ABS_PINNED_HARD);
|
|
}
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
}
|
|
|
|
static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
|
|
{
|
|
if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
|
|
return;
|
|
|
|
do_start_rt_bandwidth(rt_b);
|
|
}
|
|
|
|
void init_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_prio_array *array;
|
|
int i;
|
|
|
|
array = &rt_rq->active;
|
|
for (i = 0; i < MAX_RT_PRIO; i++) {
|
|
INIT_LIST_HEAD(array->queue + i);
|
|
__clear_bit(i, array->bitmap);
|
|
}
|
|
/* delimiter for bitsearch: */
|
|
__set_bit(MAX_RT_PRIO, array->bitmap);
|
|
|
|
#if defined CONFIG_SMP
|
|
rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
|
|
rt_rq->highest_prio.next = MAX_RT_PRIO-1;
|
|
rt_rq->rt_nr_migratory = 0;
|
|
rt_rq->overloaded = 0;
|
|
plist_head_init(&rt_rq->pushable_tasks);
|
|
#endif /* CONFIG_SMP */
|
|
/* We start is dequeued state, because no RT tasks are queued */
|
|
rt_rq->rt_queued = 0;
|
|
|
|
rt_rq->rt_time = 0;
|
|
rt_rq->rt_throttled = 0;
|
|
rt_rq->rt_runtime = 0;
|
|
raw_spin_lock_init(&rt_rq->rt_runtime_lock);
|
|
}
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
|
|
{
|
|
hrtimer_cancel(&rt_b->rt_period_timer);
|
|
}
|
|
|
|
#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
|
|
|
|
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
|
|
{
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
WARN_ON_ONCE(!rt_entity_is_task(rt_se));
|
|
#endif
|
|
return container_of(rt_se, struct task_struct, rt);
|
|
}
|
|
|
|
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rq;
|
|
}
|
|
|
|
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
return rt_se->rt_rq;
|
|
}
|
|
|
|
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *rt_rq = rt_se->rt_rq;
|
|
|
|
return rt_rq->rq;
|
|
}
|
|
|
|
void unregister_rt_sched_group(struct task_group *tg)
|
|
{
|
|
if (tg->rt_se)
|
|
destroy_rt_bandwidth(&tg->rt_bandwidth);
|
|
|
|
}
|
|
|
|
void free_rt_sched_group(struct task_group *tg)
|
|
{
|
|
int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
if (tg->rt_rq)
|
|
kfree(tg->rt_rq[i]);
|
|
if (tg->rt_se)
|
|
kfree(tg->rt_se[i]);
|
|
}
|
|
|
|
kfree(tg->rt_rq);
|
|
kfree(tg->rt_se);
|
|
}
|
|
|
|
void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
|
|
struct sched_rt_entity *rt_se, int cpu,
|
|
struct sched_rt_entity *parent)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
|
|
rt_rq->rt_nr_boosted = 0;
|
|
rt_rq->rq = rq;
|
|
rt_rq->tg = tg;
|
|
|
|
tg->rt_rq[cpu] = rt_rq;
|
|
tg->rt_se[cpu] = rt_se;
|
|
|
|
if (!rt_se)
|
|
return;
|
|
|
|
if (!parent)
|
|
rt_se->rt_rq = &rq->rt;
|
|
else
|
|
rt_se->rt_rq = parent->my_q;
|
|
|
|
rt_se->my_q = rt_rq;
|
|
rt_se->parent = parent;
|
|
INIT_LIST_HEAD(&rt_se->run_list);
|
|
}
|
|
|
|
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
|
|
{
|
|
struct rt_rq *rt_rq;
|
|
struct sched_rt_entity *rt_se;
|
|
int i;
|
|
|
|
tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
|
|
if (!tg->rt_rq)
|
|
goto err;
|
|
tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
|
|
if (!tg->rt_se)
|
|
goto err;
|
|
|
|
init_rt_bandwidth(&tg->rt_bandwidth,
|
|
ktime_to_ns(def_rt_bandwidth.rt_period), 0);
|
|
|
|
for_each_possible_cpu(i) {
|
|
rt_rq = kzalloc_node(sizeof(struct rt_rq),
|
|
GFP_KERNEL, cpu_to_node(i));
|
|
if (!rt_rq)
|
|
goto err;
|
|
|
|
rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
|
|
GFP_KERNEL, cpu_to_node(i));
|
|
if (!rt_se)
|
|
goto err_free_rq;
|
|
|
|
init_rt_rq(rt_rq);
|
|
rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
|
|
init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
|
|
}
|
|
|
|
return 1;
|
|
|
|
err_free_rq:
|
|
kfree(rt_rq);
|
|
err:
|
|
return 0;
|
|
}
|
|
|
|
#else /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
#define rt_entity_is_task(rt_se) (1)
|
|
|
|
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
|
|
{
|
|
return container_of(rt_se, struct task_struct, rt);
|
|
}
|
|
|
|
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
return container_of(rt_rq, struct rq, rt);
|
|
}
|
|
|
|
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct task_struct *p = rt_task_of(rt_se);
|
|
|
|
return task_rq(p);
|
|
}
|
|
|
|
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rq *rq = rq_of_rt_se(rt_se);
|
|
|
|
return &rq->rt;
|
|
}
|
|
|
|
void unregister_rt_sched_group(struct task_group *tg) { }
|
|
|
|
void free_rt_sched_group(struct task_group *tg) { }
|
|
|
|
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
/* Try to pull RT tasks here if we lower this rq's prio */
|
|
return rq->online && rq->rt.highest_prio.curr > prev->prio;
|
|
}
|
|
|
|
static inline int rt_overloaded(struct rq *rq)
|
|
{
|
|
return atomic_read(&rq->rd->rto_count);
|
|
}
|
|
|
|
static inline void rt_set_overload(struct rq *rq)
|
|
{
|
|
if (!rq->online)
|
|
return;
|
|
|
|
cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
|
|
/*
|
|
* Make sure the mask is visible before we set
|
|
* the overload count. That is checked to determine
|
|
* if we should look at the mask. It would be a shame
|
|
* if we looked at the mask, but the mask was not
|
|
* updated yet.
|
|
*
|
|
* Matched by the barrier in pull_rt_task().
|
|
*/
|
|
smp_wmb();
|
|
atomic_inc(&rq->rd->rto_count);
|
|
}
|
|
|
|
static inline void rt_clear_overload(struct rq *rq)
|
|
{
|
|
if (!rq->online)
|
|
return;
|
|
|
|
/* the order here really doesn't matter */
|
|
atomic_dec(&rq->rd->rto_count);
|
|
cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
|
|
}
|
|
|
|
static void update_rt_migration(struct rt_rq *rt_rq)
|
|
{
|
|
if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
|
|
if (!rt_rq->overloaded) {
|
|
rt_set_overload(rq_of_rt_rq(rt_rq));
|
|
rt_rq->overloaded = 1;
|
|
}
|
|
} else if (rt_rq->overloaded) {
|
|
rt_clear_overload(rq_of_rt_rq(rt_rq));
|
|
rt_rq->overloaded = 0;
|
|
}
|
|
}
|
|
|
|
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
if (!rt_entity_is_task(rt_se))
|
|
return;
|
|
|
|
p = rt_task_of(rt_se);
|
|
rt_rq = &rq_of_rt_rq(rt_rq)->rt;
|
|
|
|
rt_rq->rt_nr_total++;
|
|
if (p->nr_cpus_allowed > 1)
|
|
rt_rq->rt_nr_migratory++;
|
|
|
|
update_rt_migration(rt_rq);
|
|
}
|
|
|
|
static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
if (!rt_entity_is_task(rt_se))
|
|
return;
|
|
|
|
p = rt_task_of(rt_se);
|
|
rt_rq = &rq_of_rt_rq(rt_rq)->rt;
|
|
|
|
rt_rq->rt_nr_total--;
|
|
if (p->nr_cpus_allowed > 1)
|
|
rt_rq->rt_nr_migratory--;
|
|
|
|
update_rt_migration(rt_rq);
|
|
}
|
|
|
|
static inline int has_pushable_tasks(struct rq *rq)
|
|
{
|
|
return !plist_head_empty(&rq->rt.pushable_tasks);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
|
|
static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
|
|
|
|
static void push_rt_tasks(struct rq *);
|
|
static void pull_rt_task(struct rq *);
|
|
|
|
static inline void rt_queue_push_tasks(struct rq *rq)
|
|
{
|
|
if (!has_pushable_tasks(rq))
|
|
return;
|
|
|
|
queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
|
|
}
|
|
|
|
static inline void rt_queue_pull_task(struct rq *rq)
|
|
{
|
|
queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
|
|
}
|
|
|
|
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
|
|
plist_node_init(&p->pushable_tasks, p->prio);
|
|
plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
|
|
|
|
/* Update the highest prio pushable task */
|
|
if (p->prio < rq->rt.highest_prio.next)
|
|
rq->rt.highest_prio.next = p->prio;
|
|
}
|
|
|
|
static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
|
|
|
|
/* Update the new highest prio pushable task */
|
|
if (has_pushable_tasks(rq)) {
|
|
p = plist_first_entry(&rq->rt.pushable_tasks,
|
|
struct task_struct, pushable_tasks);
|
|
rq->rt.highest_prio.next = p->prio;
|
|
} else {
|
|
rq->rt.highest_prio.next = MAX_RT_PRIO-1;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline
|
|
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
}
|
|
|
|
static inline
|
|
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
}
|
|
|
|
static inline void rt_queue_push_tasks(struct rq *rq)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
|
|
static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
|
|
|
|
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
|
|
{
|
|
return rt_se->on_rq;
|
|
}
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
/*
|
|
* Verify the fitness of task @p to run on @cpu taking into account the uclamp
|
|
* settings.
|
|
*
|
|
* This check is only important for heterogeneous systems where uclamp_min value
|
|
* is higher than the capacity of a @cpu. For non-heterogeneous system this
|
|
* function will always return true.
|
|
*
|
|
* The function will return true if the capacity of the @cpu is >= the
|
|
* uclamp_min and false otherwise.
|
|
*
|
|
* Note that uclamp_min will be clamped to uclamp_max if uclamp_min
|
|
* > uclamp_max.
|
|
*/
|
|
static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
|
|
{
|
|
unsigned int min_cap;
|
|
unsigned int max_cap;
|
|
unsigned int cpu_cap;
|
|
|
|
/* Only heterogeneous systems can benefit from this check */
|
|
if (!sched_asym_cpucap_active())
|
|
return true;
|
|
|
|
min_cap = uclamp_eff_value(p, UCLAMP_MIN);
|
|
max_cap = uclamp_eff_value(p, UCLAMP_MAX);
|
|
|
|
cpu_cap = capacity_orig_of(cpu);
|
|
|
|
return cpu_cap >= min(min_cap, max_cap);
|
|
}
|
|
#else
|
|
static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
|
|
{
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
|
|
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
|
|
{
|
|
if (!rt_rq->tg)
|
|
return RUNTIME_INF;
|
|
|
|
return rt_rq->rt_runtime;
|
|
}
|
|
|
|
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
|
|
{
|
|
return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
|
|
}
|
|
|
|
typedef struct task_group *rt_rq_iter_t;
|
|
|
|
static inline struct task_group *next_task_group(struct task_group *tg)
|
|
{
|
|
do {
|
|
tg = list_entry_rcu(tg->list.next,
|
|
typeof(struct task_group), list);
|
|
} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
|
|
|
|
if (&tg->list == &task_groups)
|
|
tg = NULL;
|
|
|
|
return tg;
|
|
}
|
|
|
|
#define for_each_rt_rq(rt_rq, iter, rq) \
|
|
for (iter = container_of(&task_groups, typeof(*iter), list); \
|
|
(iter = next_task_group(iter)) && \
|
|
(rt_rq = iter->rt_rq[cpu_of(rq)]);)
|
|
|
|
#define for_each_sched_rt_entity(rt_se) \
|
|
for (; rt_se; rt_se = rt_se->parent)
|
|
|
|
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
|
|
{
|
|
return rt_se->my_q;
|
|
}
|
|
|
|
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
|
|
static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
|
|
|
|
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
|
|
{
|
|
struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
struct sched_rt_entity *rt_se;
|
|
|
|
int cpu = cpu_of(rq);
|
|
|
|
rt_se = rt_rq->tg->rt_se[cpu];
|
|
|
|
if (rt_rq->rt_nr_running) {
|
|
if (!rt_se)
|
|
enqueue_top_rt_rq(rt_rq);
|
|
else if (!on_rt_rq(rt_se))
|
|
enqueue_rt_entity(rt_se, 0);
|
|
|
|
if (rt_rq->highest_prio.curr < curr->prio)
|
|
resched_curr(rq);
|
|
}
|
|
}
|
|
|
|
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
|
|
{
|
|
struct sched_rt_entity *rt_se;
|
|
int cpu = cpu_of(rq_of_rt_rq(rt_rq));
|
|
|
|
rt_se = rt_rq->tg->rt_se[cpu];
|
|
|
|
if (!rt_se) {
|
|
dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
|
|
/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
|
|
cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
|
|
}
|
|
else if (on_rt_rq(rt_se))
|
|
dequeue_rt_entity(rt_se, 0);
|
|
}
|
|
|
|
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
|
|
}
|
|
|
|
static int rt_se_boosted(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *rt_rq = group_rt_rq(rt_se);
|
|
struct task_struct *p;
|
|
|
|
if (rt_rq)
|
|
return !!rt_rq->rt_nr_boosted;
|
|
|
|
p = rt_task_of(rt_se);
|
|
return p->prio != p->normal_prio;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline const struct cpumask *sched_rt_period_mask(void)
|
|
{
|
|
return this_rq()->rd->span;
|
|
}
|
|
#else
|
|
static inline const struct cpumask *sched_rt_period_mask(void)
|
|
{
|
|
return cpu_online_mask;
|
|
}
|
|
#endif
|
|
|
|
static inline
|
|
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
|
|
{
|
|
return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
|
|
}
|
|
|
|
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
|
|
{
|
|
return &rt_rq->tg->rt_bandwidth;
|
|
}
|
|
|
|
#else /* !CONFIG_RT_GROUP_SCHED */
|
|
|
|
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rt_runtime;
|
|
}
|
|
|
|
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
|
|
{
|
|
return ktime_to_ns(def_rt_bandwidth.rt_period);
|
|
}
|
|
|
|
typedef struct rt_rq *rt_rq_iter_t;
|
|
|
|
#define for_each_rt_rq(rt_rq, iter, rq) \
|
|
for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
|
|
|
|
#define for_each_sched_rt_entity(rt_se) \
|
|
for (; rt_se; rt_se = NULL)
|
|
|
|
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
if (!rt_rq->rt_nr_running)
|
|
return;
|
|
|
|
enqueue_top_rt_rq(rt_rq);
|
|
resched_curr(rq);
|
|
}
|
|
|
|
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
|
|
{
|
|
dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
|
|
}
|
|
|
|
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rt_throttled;
|
|
}
|
|
|
|
static inline const struct cpumask *sched_rt_period_mask(void)
|
|
{
|
|
return cpu_online_mask;
|
|
}
|
|
|
|
static inline
|
|
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
|
|
{
|
|
return &cpu_rq(cpu)->rt;
|
|
}
|
|
|
|
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
|
|
{
|
|
return &def_rt_bandwidth;
|
|
}
|
|
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
|
|
return (hrtimer_active(&rt_b->rt_period_timer) ||
|
|
rt_rq->rt_time < rt_b->rt_runtime);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* We ran out of runtime, see if we can borrow some from our neighbours.
|
|
*/
|
|
static void do_balance_runtime(struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
|
|
int i, weight;
|
|
u64 rt_period;
|
|
|
|
weight = cpumask_weight(rd->span);
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
rt_period = ktime_to_ns(rt_b->rt_period);
|
|
for_each_cpu(i, rd->span) {
|
|
struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
|
|
s64 diff;
|
|
|
|
if (iter == rt_rq)
|
|
continue;
|
|
|
|
raw_spin_lock(&iter->rt_runtime_lock);
|
|
/*
|
|
* Either all rqs have inf runtime and there's nothing to steal
|
|
* or __disable_runtime() below sets a specific rq to inf to
|
|
* indicate its been disabled and disallow stealing.
|
|
*/
|
|
if (iter->rt_runtime == RUNTIME_INF)
|
|
goto next;
|
|
|
|
/*
|
|
* From runqueues with spare time, take 1/n part of their
|
|
* spare time, but no more than our period.
|
|
*/
|
|
diff = iter->rt_runtime - iter->rt_time;
|
|
if (diff > 0) {
|
|
diff = div_u64((u64)diff, weight);
|
|
if (rt_rq->rt_runtime + diff > rt_period)
|
|
diff = rt_period - rt_rq->rt_runtime;
|
|
iter->rt_runtime -= diff;
|
|
rt_rq->rt_runtime += diff;
|
|
if (rt_rq->rt_runtime == rt_period) {
|
|
raw_spin_unlock(&iter->rt_runtime_lock);
|
|
break;
|
|
}
|
|
}
|
|
next:
|
|
raw_spin_unlock(&iter->rt_runtime_lock);
|
|
}
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
}
|
|
|
|
/*
|
|
* Ensure this RQ takes back all the runtime it lend to its neighbours.
|
|
*/
|
|
static void __disable_runtime(struct rq *rq)
|
|
{
|
|
struct root_domain *rd = rq->rd;
|
|
rt_rq_iter_t iter;
|
|
struct rt_rq *rt_rq;
|
|
|
|
if (unlikely(!scheduler_running))
|
|
return;
|
|
|
|
for_each_rt_rq(rt_rq, iter, rq) {
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
s64 want;
|
|
int i;
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
/*
|
|
* Either we're all inf and nobody needs to borrow, or we're
|
|
* already disabled and thus have nothing to do, or we have
|
|
* exactly the right amount of runtime to take out.
|
|
*/
|
|
if (rt_rq->rt_runtime == RUNTIME_INF ||
|
|
rt_rq->rt_runtime == rt_b->rt_runtime)
|
|
goto balanced;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
|
|
/*
|
|
* Calculate the difference between what we started out with
|
|
* and what we current have, that's the amount of runtime
|
|
* we lend and now have to reclaim.
|
|
*/
|
|
want = rt_b->rt_runtime - rt_rq->rt_runtime;
|
|
|
|
/*
|
|
* Greedy reclaim, take back as much as we can.
|
|
*/
|
|
for_each_cpu(i, rd->span) {
|
|
struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
|
|
s64 diff;
|
|
|
|
/*
|
|
* Can't reclaim from ourselves or disabled runqueues.
|
|
*/
|
|
if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
|
|
continue;
|
|
|
|
raw_spin_lock(&iter->rt_runtime_lock);
|
|
if (want > 0) {
|
|
diff = min_t(s64, iter->rt_runtime, want);
|
|
iter->rt_runtime -= diff;
|
|
want -= diff;
|
|
} else {
|
|
iter->rt_runtime -= want;
|
|
want -= want;
|
|
}
|
|
raw_spin_unlock(&iter->rt_runtime_lock);
|
|
|
|
if (!want)
|
|
break;
|
|
}
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
/*
|
|
* We cannot be left wanting - that would mean some runtime
|
|
* leaked out of the system.
|
|
*/
|
|
WARN_ON_ONCE(want);
|
|
balanced:
|
|
/*
|
|
* Disable all the borrow logic by pretending we have inf
|
|
* runtime - in which case borrowing doesn't make sense.
|
|
*/
|
|
rt_rq->rt_runtime = RUNTIME_INF;
|
|
rt_rq->rt_throttled = 0;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
|
|
/* Make rt_rq available for pick_next_task() */
|
|
sched_rt_rq_enqueue(rt_rq);
|
|
}
|
|
}
|
|
|
|
static void __enable_runtime(struct rq *rq)
|
|
{
|
|
rt_rq_iter_t iter;
|
|
struct rt_rq *rt_rq;
|
|
|
|
if (unlikely(!scheduler_running))
|
|
return;
|
|
|
|
/*
|
|
* Reset each runqueue's bandwidth settings
|
|
*/
|
|
for_each_rt_rq(rt_rq, iter, rq) {
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
rt_rq->rt_runtime = rt_b->rt_runtime;
|
|
rt_rq->rt_time = 0;
|
|
rt_rq->rt_throttled = 0;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
}
|
|
}
|
|
|
|
static void balance_runtime(struct rt_rq *rt_rq)
|
|
{
|
|
if (!sched_feat(RT_RUNTIME_SHARE))
|
|
return;
|
|
|
|
if (rt_rq->rt_time > rt_rq->rt_runtime) {
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
do_balance_runtime(rt_rq);
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
}
|
|
}
|
|
#else /* !CONFIG_SMP */
|
|
static inline void balance_runtime(struct rt_rq *rt_rq) {}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
|
|
{
|
|
int i, idle = 1, throttled = 0;
|
|
const struct cpumask *span;
|
|
|
|
span = sched_rt_period_mask();
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* FIXME: isolated CPUs should really leave the root task group,
|
|
* whether they are isolcpus or were isolated via cpusets, lest
|
|
* the timer run on a CPU which does not service all runqueues,
|
|
* potentially leaving other CPUs indefinitely throttled. If
|
|
* isolation is really required, the user will turn the throttle
|
|
* off to kill the perturbations it causes anyway. Meanwhile,
|
|
* this maintains functionality for boot and/or troubleshooting.
|
|
*/
|
|
if (rt_b == &root_task_group.rt_bandwidth)
|
|
span = cpu_online_mask;
|
|
#endif
|
|
for_each_cpu(i, span) {
|
|
int enqueue = 0;
|
|
struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
struct rq_flags rf;
|
|
int skip;
|
|
|
|
/*
|
|
* When span == cpu_online_mask, taking each rq->lock
|
|
* can be time-consuming. Try to avoid it when possible.
|
|
*/
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
|
|
rt_rq->rt_runtime = rt_b->rt_runtime;
|
|
skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
if (skip)
|
|
continue;
|
|
|
|
rq_lock(rq, &rf);
|
|
update_rq_clock(rq);
|
|
|
|
if (rt_rq->rt_time) {
|
|
u64 runtime;
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
if (rt_rq->rt_throttled)
|
|
balance_runtime(rt_rq);
|
|
runtime = rt_rq->rt_runtime;
|
|
rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
|
|
if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
|
|
rt_rq->rt_throttled = 0;
|
|
enqueue = 1;
|
|
|
|
/*
|
|
* When we're idle and a woken (rt) task is
|
|
* throttled check_preempt_curr() will set
|
|
* skip_update and the time between the wakeup
|
|
* and this unthrottle will get accounted as
|
|
* 'runtime'.
|
|
*/
|
|
if (rt_rq->rt_nr_running && rq->curr == rq->idle)
|
|
rq_clock_cancel_skipupdate(rq);
|
|
}
|
|
if (rt_rq->rt_time || rt_rq->rt_nr_running)
|
|
idle = 0;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
} else if (rt_rq->rt_nr_running) {
|
|
idle = 0;
|
|
if (!rt_rq_throttled(rt_rq))
|
|
enqueue = 1;
|
|
}
|
|
if (rt_rq->rt_throttled)
|
|
throttled = 1;
|
|
|
|
if (enqueue)
|
|
sched_rt_rq_enqueue(rt_rq);
|
|
rq_unlock(rq, &rf);
|
|
}
|
|
|
|
if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
|
|
return 1;
|
|
|
|
return idle;
|
|
}
|
|
|
|
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
|
|
{
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
struct rt_rq *rt_rq = group_rt_rq(rt_se);
|
|
|
|
if (rt_rq)
|
|
return rt_rq->highest_prio.curr;
|
|
#endif
|
|
|
|
return rt_task_of(rt_se)->prio;
|
|
}
|
|
|
|
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
|
|
{
|
|
u64 runtime = sched_rt_runtime(rt_rq);
|
|
|
|
if (rt_rq->rt_throttled)
|
|
return rt_rq_throttled(rt_rq);
|
|
|
|
if (runtime >= sched_rt_period(rt_rq))
|
|
return 0;
|
|
|
|
balance_runtime(rt_rq);
|
|
runtime = sched_rt_runtime(rt_rq);
|
|
if (runtime == RUNTIME_INF)
|
|
return 0;
|
|
|
|
if (rt_rq->rt_time > runtime) {
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
|
|
/*
|
|
* Don't actually throttle groups that have no runtime assigned
|
|
* but accrue some time due to boosting.
|
|
*/
|
|
if (likely(rt_b->rt_runtime)) {
|
|
rt_rq->rt_throttled = 1;
|
|
printk_deferred_once("sched: RT throttling activated\n");
|
|
|
|
trace_android_vh_dump_throttled_rt_tasks(
|
|
raw_smp_processor_id(),
|
|
rq_clock(rq_of_rt_rq(rt_rq)),
|
|
sched_rt_period(rt_rq),
|
|
runtime,
|
|
hrtimer_get_expires_ns(&rt_b->rt_period_timer));
|
|
} else {
|
|
/*
|
|
* In case we did anyway, make it go away,
|
|
* replenishment is a joke, since it will replenish us
|
|
* with exactly 0 ns.
|
|
*/
|
|
rt_rq->rt_time = 0;
|
|
}
|
|
|
|
if (rt_rq_throttled(rt_rq)) {
|
|
sched_rt_rq_dequeue(rt_rq);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update the current task's runtime statistics. Skip current tasks that
|
|
* are not in our scheduling class.
|
|
*/
|
|
static void update_curr_rt(struct rq *rq)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
struct sched_rt_entity *rt_se = &curr->rt;
|
|
u64 delta_exec;
|
|
u64 now;
|
|
|
|
if (curr->sched_class != &rt_sched_class)
|
|
return;
|
|
|
|
now = rq_clock_task(rq);
|
|
delta_exec = now - curr->se.exec_start;
|
|
if (unlikely((s64)delta_exec <= 0))
|
|
return;
|
|
|
|
schedstat_set(curr->stats.exec_max,
|
|
max(curr->stats.exec_max, delta_exec));
|
|
|
|
trace_sched_stat_runtime(curr, delta_exec, 0);
|
|
|
|
update_current_exec_runtime(curr, now, delta_exec);
|
|
|
|
if (!rt_bandwidth_enabled())
|
|
return;
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
int exceeded;
|
|
|
|
if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
rt_rq->rt_time += delta_exec;
|
|
exceeded = sched_rt_runtime_exceeded(rt_rq);
|
|
if (exceeded)
|
|
resched_curr(rq);
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
if (exceeded)
|
|
do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
BUG_ON(&rq->rt != rt_rq);
|
|
|
|
if (!rt_rq->rt_queued)
|
|
return;
|
|
|
|
BUG_ON(!rq->nr_running);
|
|
|
|
sub_nr_running(rq, count);
|
|
rt_rq->rt_queued = 0;
|
|
|
|
}
|
|
|
|
static void
|
|
enqueue_top_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
BUG_ON(&rq->rt != rt_rq);
|
|
|
|
if (rt_rq->rt_queued)
|
|
return;
|
|
|
|
if (rt_rq_throttled(rt_rq))
|
|
return;
|
|
|
|
if (rt_rq->rt_nr_running) {
|
|
add_nr_running(rq, rt_rq->rt_nr_running);
|
|
rt_rq->rt_queued = 1;
|
|
}
|
|
|
|
/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
|
|
cpufreq_update_util(rq, 0);
|
|
}
|
|
|
|
#if defined CONFIG_SMP
|
|
|
|
static void
|
|
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* Change rq's cpupri only if rt_rq is the top queue.
|
|
*/
|
|
if (&rq->rt != rt_rq)
|
|
return;
|
|
#endif
|
|
if (rq->online && prio < prev_prio)
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
|
|
}
|
|
|
|
static void
|
|
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* Change rq's cpupri only if rt_rq is the top queue.
|
|
*/
|
|
if (&rq->rt != rt_rq)
|
|
return;
|
|
#endif
|
|
if (rq->online && rt_rq->highest_prio.curr != prev_prio)
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
|
|
}
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
static inline
|
|
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
|
|
static inline
|
|
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
static void
|
|
inc_rt_prio(struct rt_rq *rt_rq, int prio)
|
|
{
|
|
int prev_prio = rt_rq->highest_prio.curr;
|
|
|
|
if (prio < prev_prio)
|
|
rt_rq->highest_prio.curr = prio;
|
|
|
|
inc_rt_prio_smp(rt_rq, prio, prev_prio);
|
|
}
|
|
|
|
static void
|
|
dec_rt_prio(struct rt_rq *rt_rq, int prio)
|
|
{
|
|
int prev_prio = rt_rq->highest_prio.curr;
|
|
|
|
if (rt_rq->rt_nr_running) {
|
|
|
|
WARN_ON(prio < prev_prio);
|
|
|
|
/*
|
|
* This may have been our highest task, and therefore
|
|
* we may have some recomputation to do
|
|
*/
|
|
if (prio == prev_prio) {
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
|
|
rt_rq->highest_prio.curr =
|
|
sched_find_first_bit(array->bitmap);
|
|
}
|
|
|
|
} else {
|
|
rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
|
|
}
|
|
|
|
dec_rt_prio_smp(rt_rq, prio, prev_prio);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
|
|
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
|
|
|
|
#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
|
|
static void
|
|
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
if (rt_se_boosted(rt_se))
|
|
rt_rq->rt_nr_boosted++;
|
|
|
|
if (rt_rq->tg)
|
|
start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
|
|
}
|
|
|
|
static void
|
|
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
if (rt_se_boosted(rt_se))
|
|
rt_rq->rt_nr_boosted--;
|
|
|
|
WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
|
|
}
|
|
|
|
#else /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
static void
|
|
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
start_rt_bandwidth(&def_rt_bandwidth);
|
|
}
|
|
|
|
static inline
|
|
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
|
|
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
static inline
|
|
unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *group_rq = group_rt_rq(rt_se);
|
|
|
|
if (group_rq)
|
|
return group_rq->rt_nr_running;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static inline
|
|
unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *group_rq = group_rt_rq(rt_se);
|
|
struct task_struct *tsk;
|
|
|
|
if (group_rq)
|
|
return group_rq->rr_nr_running;
|
|
|
|
tsk = rt_task_of(rt_se);
|
|
|
|
return (tsk->policy == SCHED_RR) ? 1 : 0;
|
|
}
|
|
|
|
static inline
|
|
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
int prio = rt_se_prio(rt_se);
|
|
|
|
WARN_ON(!rt_prio(prio));
|
|
rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
|
|
rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
|
|
|
|
inc_rt_prio(rt_rq, prio);
|
|
inc_rt_migration(rt_se, rt_rq);
|
|
inc_rt_group(rt_se, rt_rq);
|
|
}
|
|
|
|
static inline
|
|
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
WARN_ON(!rt_prio(rt_se_prio(rt_se)));
|
|
WARN_ON(!rt_rq->rt_nr_running);
|
|
rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
|
|
rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
|
|
|
|
dec_rt_prio(rt_rq, rt_se_prio(rt_se));
|
|
dec_rt_migration(rt_se, rt_rq);
|
|
dec_rt_group(rt_se, rt_rq);
|
|
}
|
|
|
|
/*
|
|
* Change rt_se->run_list location unless SAVE && !MOVE
|
|
*
|
|
* assumes ENQUEUE/DEQUEUE flags match
|
|
*/
|
|
static inline bool move_entity(unsigned int flags)
|
|
{
|
|
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
|
|
{
|
|
list_del_init(&rt_se->run_list);
|
|
|
|
if (list_empty(array->queue + rt_se_prio(rt_se)))
|
|
__clear_bit(rt_se_prio(rt_se), array->bitmap);
|
|
|
|
rt_se->on_list = 0;
|
|
}
|
|
|
|
static inline struct sched_statistics *
|
|
__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/* schedstats is not supported for rt group. */
|
|
if (!rt_entity_is_task(rt_se))
|
|
return NULL;
|
|
#endif
|
|
|
|
return &rt_task_of(rt_se)->stats;
|
|
}
|
|
|
|
static inline void
|
|
update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
|
|
{
|
|
struct sched_statistics *stats;
|
|
struct task_struct *p = NULL;
|
|
|
|
if (!schedstat_enabled())
|
|
return;
|
|
|
|
if (rt_entity_is_task(rt_se))
|
|
p = rt_task_of(rt_se);
|
|
|
|
stats = __schedstats_from_rt_se(rt_se);
|
|
if (!stats)
|
|
return;
|
|
|
|
__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
|
|
}
|
|
|
|
static inline void
|
|
update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
|
|
{
|
|
struct sched_statistics *stats;
|
|
struct task_struct *p = NULL;
|
|
|
|
if (!schedstat_enabled())
|
|
return;
|
|
|
|
if (rt_entity_is_task(rt_se))
|
|
p = rt_task_of(rt_se);
|
|
|
|
stats = __schedstats_from_rt_se(rt_se);
|
|
if (!stats)
|
|
return;
|
|
|
|
__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
|
|
}
|
|
|
|
static inline void
|
|
update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
|
|
int flags)
|
|
{
|
|
if (!schedstat_enabled())
|
|
return;
|
|
|
|
if (flags & ENQUEUE_WAKEUP)
|
|
update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
|
|
}
|
|
|
|
static inline void
|
|
update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
|
|
{
|
|
struct sched_statistics *stats;
|
|
struct task_struct *p = NULL;
|
|
|
|
if (!schedstat_enabled())
|
|
return;
|
|
|
|
if (rt_entity_is_task(rt_se))
|
|
p = rt_task_of(rt_se);
|
|
|
|
stats = __schedstats_from_rt_se(rt_se);
|
|
if (!stats)
|
|
return;
|
|
|
|
__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
|
|
}
|
|
|
|
static inline void
|
|
update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
|
|
int flags)
|
|
{
|
|
struct task_struct *p = NULL;
|
|
|
|
if (!schedstat_enabled())
|
|
return;
|
|
|
|
if (rt_entity_is_task(rt_se))
|
|
p = rt_task_of(rt_se);
|
|
|
|
if ((flags & DEQUEUE_SLEEP) && p) {
|
|
unsigned int state;
|
|
|
|
state = READ_ONCE(p->__state);
|
|
if (state & TASK_INTERRUPTIBLE)
|
|
__schedstat_set(p->stats.sleep_start,
|
|
rq_clock(rq_of_rt_rq(rt_rq)));
|
|
|
|
if (state & TASK_UNINTERRUPTIBLE)
|
|
__schedstat_set(p->stats.block_start,
|
|
rq_clock(rq_of_rt_rq(rt_rq)));
|
|
}
|
|
}
|
|
|
|
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
|
|
{
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
struct rt_rq *group_rq = group_rt_rq(rt_se);
|
|
struct list_head *queue = array->queue + rt_se_prio(rt_se);
|
|
|
|
/*
|
|
* Don't enqueue the group if its throttled, or when empty.
|
|
* The latter is a consequence of the former when a child group
|
|
* get throttled and the current group doesn't have any other
|
|
* active members.
|
|
*/
|
|
if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
|
|
if (rt_se->on_list)
|
|
__delist_rt_entity(rt_se, array);
|
|
return;
|
|
}
|
|
|
|
if (move_entity(flags)) {
|
|
WARN_ON_ONCE(rt_se->on_list);
|
|
if (flags & ENQUEUE_HEAD)
|
|
list_add(&rt_se->run_list, queue);
|
|
else
|
|
list_add_tail(&rt_se->run_list, queue);
|
|
|
|
__set_bit(rt_se_prio(rt_se), array->bitmap);
|
|
rt_se->on_list = 1;
|
|
}
|
|
rt_se->on_rq = 1;
|
|
|
|
inc_rt_tasks(rt_se, rt_rq);
|
|
}
|
|
|
|
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
|
|
{
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
|
|
if (move_entity(flags)) {
|
|
WARN_ON_ONCE(!rt_se->on_list);
|
|
__delist_rt_entity(rt_se, array);
|
|
}
|
|
rt_se->on_rq = 0;
|
|
|
|
dec_rt_tasks(rt_se, rt_rq);
|
|
}
|
|
|
|
/*
|
|
* Because the prio of an upper entry depends on the lower
|
|
* entries, we must remove entries top - down.
|
|
*/
|
|
static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
|
|
{
|
|
struct sched_rt_entity *back = NULL;
|
|
unsigned int rt_nr_running;
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
rt_se->back = back;
|
|
back = rt_se;
|
|
}
|
|
|
|
rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
|
|
|
|
for (rt_se = back; rt_se; rt_se = rt_se->back) {
|
|
if (on_rt_rq(rt_se))
|
|
__dequeue_rt_entity(rt_se, flags);
|
|
}
|
|
|
|
dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
|
|
}
|
|
|
|
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
|
|
{
|
|
struct rq *rq = rq_of_rt_se(rt_se);
|
|
|
|
update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
|
|
|
|
dequeue_rt_stack(rt_se, flags);
|
|
for_each_sched_rt_entity(rt_se)
|
|
__enqueue_rt_entity(rt_se, flags);
|
|
enqueue_top_rt_rq(&rq->rt);
|
|
}
|
|
|
|
static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
|
|
{
|
|
struct rq *rq = rq_of_rt_se(rt_se);
|
|
|
|
update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
|
|
|
|
dequeue_rt_stack(rt_se, flags);
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
struct rt_rq *rt_rq = group_rt_rq(rt_se);
|
|
|
|
if (rt_rq && rt_rq->rt_nr_running)
|
|
__enqueue_rt_entity(rt_se, flags);
|
|
}
|
|
enqueue_top_rt_rq(&rq->rt);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline bool should_honor_rt_sync(struct rq *rq, struct task_struct *p,
|
|
bool sync)
|
|
{
|
|
/*
|
|
* If the waker is CFS, then an RT sync wakeup would preempt the waker
|
|
* and force it to run for a likely small time after the RT wakee is
|
|
* done. So, only honor RT sync wakeups from RT wakers.
|
|
*/
|
|
return sync && task_has_rt_policy(rq->curr) &&
|
|
p->prio <= rq->rt.highest_prio.next &&
|
|
rq->rt.rt_nr_running <= 2;
|
|
}
|
|
#else
|
|
static inline bool should_honor_rt_sync(struct rq *rq, struct task_struct *p,
|
|
bool sync)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Adding/removing a task to/from a priority array:
|
|
*/
|
|
static void
|
|
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
bool sync = !!(flags & ENQUEUE_WAKEUP_SYNC);
|
|
|
|
if (flags & ENQUEUE_WAKEUP)
|
|
rt_se->timeout = 0;
|
|
|
|
check_schedstat_required();
|
|
update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
|
|
|
|
enqueue_rt_entity(rt_se, flags);
|
|
|
|
if (!task_current(rq, p) && p->nr_cpus_allowed > 1 &&
|
|
!should_honor_rt_sync(rq, p, sync))
|
|
enqueue_pushable_task(rq, p);
|
|
}
|
|
|
|
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
|
|
update_curr_rt(rq);
|
|
dequeue_rt_entity(rt_se, flags);
|
|
|
|
dequeue_pushable_task(rq, p);
|
|
}
|
|
|
|
/*
|
|
* Put task to the head or the end of the run list without the overhead of
|
|
* dequeue followed by enqueue.
|
|
*/
|
|
static void
|
|
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
|
|
{
|
|
if (on_rt_rq(rt_se)) {
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
struct list_head *queue = array->queue + rt_se_prio(rt_se);
|
|
|
|
if (head)
|
|
list_move(&rt_se->run_list, queue);
|
|
else
|
|
list_move_tail(&rt_se->run_list, queue);
|
|
}
|
|
}
|
|
|
|
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
struct rt_rq *rt_rq;
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
rt_rq = rt_rq_of_se(rt_se);
|
|
requeue_rt_entity(rt_rq, rt_se, head);
|
|
}
|
|
}
|
|
|
|
static void yield_task_rt(struct rq *rq)
|
|
{
|
|
requeue_task_rt(rq, rq->curr, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static int find_lowest_rq(struct task_struct *task);
|
|
|
|
#ifdef CONFIG_RT_SOFTIRQ_AWARE_SCHED
|
|
/*
|
|
* Return whether the given cpu is currently non-preemptible
|
|
* while handling a potentially long softirq, or if the current
|
|
* task is likely to block preemptions soon because it is a
|
|
* ksoftirq thread that is handling softirqs.
|
|
*/
|
|
static bool cpu_busy_with_softirqs(int cpu)
|
|
{
|
|
u32 softirqs = per_cpu(active_softirqs, cpu) |
|
|
__cpu_softirq_pending(cpu);
|
|
|
|
return softirqs & LONG_SOFTIRQ_MASK;
|
|
}
|
|
#else
|
|
static bool cpu_busy_with_softirqs(int cpu)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_RT_SOFTIRQ_AWARE_SCHED */
|
|
|
|
static bool rt_task_fits_cpu(struct task_struct *p, int cpu)
|
|
{
|
|
return rt_task_fits_capacity(p, cpu) && !cpu_busy_with_softirqs(cpu);
|
|
}
|
|
|
|
static int
|
|
select_task_rq_rt(struct task_struct *p, int cpu, int flags)
|
|
{
|
|
struct task_struct *curr;
|
|
struct rq *rq;
|
|
struct rq *this_cpu_rq;
|
|
bool test;
|
|
int target_cpu = -1;
|
|
bool sync = !!(flags & WF_SYNC);
|
|
int this_cpu;
|
|
|
|
trace_android_rvh_select_task_rq_rt(p, cpu, flags & 0xF,
|
|
flags, &target_cpu);
|
|
if (target_cpu >= 0)
|
|
return target_cpu;
|
|
|
|
/* For anything but wake ups, just return the task_cpu */
|
|
if (!(flags & (WF_TTWU | WF_FORK)))
|
|
goto out;
|
|
|
|
rq = cpu_rq(cpu);
|
|
|
|
rcu_read_lock();
|
|
curr = READ_ONCE(rq->curr); /* unlocked access */
|
|
this_cpu = smp_processor_id();
|
|
this_cpu_rq = cpu_rq(this_cpu);
|
|
|
|
/*
|
|
* If the current task on @p's runqueue is an RT task, then
|
|
* try to see if we can wake this RT task up on another
|
|
* runqueue. Otherwise simply start this RT task
|
|
* on its current runqueue.
|
|
*
|
|
* We want to avoid overloading runqueues. If the woken
|
|
* task is a higher priority, then it will stay on this CPU
|
|
* and the lower prio task should be moved to another CPU.
|
|
* Even though this will probably make the lower prio task
|
|
* lose its cache, we do not want to bounce a higher task
|
|
* around just because it gave up its CPU, perhaps for a
|
|
* lock?
|
|
*
|
|
* For equal prio tasks, we just let the scheduler sort it out.
|
|
*
|
|
* Otherwise, just let it ride on the affined RQ and the
|
|
* post-schedule router will push the preempted task away
|
|
*
|
|
* This test is optimistic, if we get it wrong the load-balancer
|
|
* will have to sort it out.
|
|
*
|
|
* We use rt_task_fits_cpu() to evaluate if the CPU is busy with
|
|
* potentially long-running softirq work, as well as take into
|
|
* account the capacity of the CPU to ensure it fits the
|
|
* requirement of the task - which is only important on
|
|
* heterogeneous systems like big.LITTLE.
|
|
*/
|
|
test = curr &&
|
|
unlikely(rt_task(curr)) &&
|
|
(curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
|
|
|
|
/*
|
|
* Respect the sync flag as long as the task can run on this CPU.
|
|
*/
|
|
if (should_honor_rt_sync(this_cpu_rq, p, sync) &&
|
|
cpumask_test_cpu(this_cpu, p->cpus_ptr)) {
|
|
cpu = this_cpu;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (test || !rt_task_fits_cpu(p, cpu)) {
|
|
int target = find_lowest_rq(p);
|
|
|
|
/*
|
|
* Bail out if we were forcing a migration to find a better
|
|
* fitting CPU but our search failed.
|
|
*/
|
|
if (!test && target != -1 && !rt_task_fits_cpu(p, target))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Don't bother moving it if the destination CPU is
|
|
* not running a lower priority task.
|
|
*/
|
|
if (target != -1 &&
|
|
p->prio < cpu_rq(target)->rt.highest_prio.curr)
|
|
cpu = target;
|
|
}
|
|
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
|
|
out:
|
|
return cpu;
|
|
}
|
|
|
|
static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
|
|
{
|
|
/*
|
|
* Current can't be migrated, useless to reschedule,
|
|
* let's hope p can move out.
|
|
*/
|
|
if (rq->curr->nr_cpus_allowed == 1 ||
|
|
!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
|
|
return;
|
|
|
|
/*
|
|
* p is migratable, so let's not schedule it and
|
|
* see if it is pushed or pulled somewhere else.
|
|
*/
|
|
if (p->nr_cpus_allowed != 1 &&
|
|
cpupri_find(&rq->rd->cpupri, p, NULL))
|
|
return;
|
|
|
|
/*
|
|
* There appear to be other CPUs that can accept
|
|
* the current task but none can run 'p', so lets reschedule
|
|
* to try and push the current task away:
|
|
*/
|
|
requeue_task_rt(rq, p, 1);
|
|
resched_curr(rq);
|
|
}
|
|
|
|
static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
|
|
{
|
|
if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
|
|
int done = 0;
|
|
|
|
/*
|
|
* This is OK, because current is on_cpu, which avoids it being
|
|
* picked for load-balance and preemption/IRQs are still
|
|
* disabled avoiding further scheduler activity on it and we've
|
|
* not yet started the picking loop.
|
|
*/
|
|
rq_unpin_lock(rq, rf);
|
|
trace_android_rvh_sched_balance_rt(rq, p, &done);
|
|
if (!done)
|
|
pull_rt_task(rq);
|
|
rq_repin_lock(rq, rf);
|
|
}
|
|
|
|
return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* Preempt the current task with a newly woken task if needed:
|
|
*/
|
|
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
if (p->prio < rq->curr->prio) {
|
|
resched_curr(rq);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* If:
|
|
*
|
|
* - the newly woken task is of equal priority to the current task
|
|
* - the newly woken task is non-migratable while current is migratable
|
|
* - current will be preempted on the next reschedule
|
|
*
|
|
* we should check to see if current can readily move to a different
|
|
* cpu. If so, we will reschedule to allow the push logic to try
|
|
* to move current somewhere else, making room for our non-migratable
|
|
* task.
|
|
*/
|
|
if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
|
|
check_preempt_equal_prio(rq, p);
|
|
#endif
|
|
}
|
|
|
|
static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
struct rt_rq *rt_rq = &rq->rt;
|
|
|
|
p->se.exec_start = rq_clock_task(rq);
|
|
if (on_rt_rq(&p->rt))
|
|
update_stats_wait_end_rt(rt_rq, rt_se);
|
|
|
|
/* The running task is never eligible for pushing */
|
|
dequeue_pushable_task(rq, p);
|
|
|
|
if (!first)
|
|
return;
|
|
|
|
/*
|
|
* If prev task was rt, put_prev_task() has already updated the
|
|
* utilization. We only care of the case where we start to schedule a
|
|
* rt task
|
|
*/
|
|
if (rq->curr->sched_class != &rt_sched_class)
|
|
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
|
|
|
|
rt_queue_push_tasks(rq);
|
|
}
|
|
|
|
static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
struct sched_rt_entity *next = NULL;
|
|
struct list_head *queue;
|
|
int idx;
|
|
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
BUG_ON(idx >= MAX_RT_PRIO);
|
|
|
|
queue = array->queue + idx;
|
|
if (SCHED_WARN_ON(list_empty(queue)))
|
|
return NULL;
|
|
next = list_entry(queue->next, struct sched_rt_entity, run_list);
|
|
|
|
return next;
|
|
}
|
|
|
|
static struct task_struct *_pick_next_task_rt(struct rq *rq)
|
|
{
|
|
struct sched_rt_entity *rt_se;
|
|
struct rt_rq *rt_rq = &rq->rt;
|
|
|
|
do {
|
|
rt_se = pick_next_rt_entity(rt_rq);
|
|
if (unlikely(!rt_se))
|
|
return NULL;
|
|
rt_rq = group_rt_rq(rt_se);
|
|
} while (rt_rq);
|
|
|
|
return rt_task_of(rt_se);
|
|
}
|
|
|
|
static struct task_struct *pick_task_rt(struct rq *rq)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
if (!sched_rt_runnable(rq))
|
|
return NULL;
|
|
|
|
p = _pick_next_task_rt(rq);
|
|
|
|
return p;
|
|
}
|
|
|
|
static struct task_struct *pick_next_task_rt(struct rq *rq)
|
|
{
|
|
struct task_struct *p = pick_task_rt(rq);
|
|
|
|
if (p)
|
|
set_next_task_rt(rq, p, true);
|
|
|
|
return p;
|
|
}
|
|
|
|
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
struct rt_rq *rt_rq = &rq->rt;
|
|
|
|
if (on_rt_rq(&p->rt))
|
|
update_stats_wait_start_rt(rt_rq, rt_se);
|
|
|
|
update_curr_rt(rq);
|
|
|
|
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
|
|
|
|
/*
|
|
* The previous task needs to be made eligible for pushing
|
|
* if it is still active
|
|
*/
|
|
if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
|
|
enqueue_pushable_task(rq, p);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/* Only try algorithms three times */
|
|
#define RT_MAX_TRIES 3
|
|
|
|
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
|
|
{
|
|
if (!task_on_cpu(rq, p) &&
|
|
cpumask_test_cpu(cpu, &p->cpus_mask))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the highest pushable rq's task, which is suitable to be executed
|
|
* on the CPU, NULL otherwise
|
|
*/
|
|
struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
|
|
{
|
|
struct plist_head *head = &rq->rt.pushable_tasks;
|
|
struct task_struct *p;
|
|
|
|
if (!has_pushable_tasks(rq))
|
|
return NULL;
|
|
|
|
plist_for_each_entry(p, head, pushable_tasks) {
|
|
if (pick_rt_task(rq, p, cpu))
|
|
return p;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pick_highest_pushable_task);
|
|
|
|
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
|
|
|
|
static int find_lowest_rq(struct task_struct *task)
|
|
{
|
|
struct sched_domain *sd;
|
|
struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
|
|
int this_cpu = smp_processor_id();
|
|
int cpu = -1;
|
|
int ret;
|
|
|
|
/* Make sure the mask is initialized first */
|
|
if (unlikely(!lowest_mask))
|
|
return -1;
|
|
|
|
if (task->nr_cpus_allowed == 1)
|
|
return -1; /* No other targets possible */
|
|
|
|
/*
|
|
* If we're using the softirq optimization or if we are
|
|
* on asym system, ensure we consider the softirq processing
|
|
* or different capacities of the CPUs when searching for the
|
|
* lowest_mask.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_RT_SOFTIRQ_AWARE_SCHED) ||
|
|
sched_asym_cpucap_active()) {
|
|
|
|
ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
|
|
task, lowest_mask,
|
|
rt_task_fits_cpu);
|
|
} else {
|
|
|
|
ret = cpupri_find(&task_rq(task)->rd->cpupri,
|
|
task, lowest_mask);
|
|
}
|
|
|
|
trace_android_rvh_find_lowest_rq(task, lowest_mask, ret, &cpu);
|
|
if (cpu >= 0)
|
|
return cpu;
|
|
|
|
if (!ret)
|
|
return -1; /* No targets found */
|
|
|
|
cpu = task_cpu(task);
|
|
|
|
/*
|
|
* At this point we have built a mask of CPUs representing the
|
|
* lowest priority tasks in the system. Now we want to elect
|
|
* the best one based on our affinity and topology.
|
|
*
|
|
* We prioritize the last CPU that the task executed on since
|
|
* it is most likely cache-hot in that location.
|
|
*/
|
|
if (cpumask_test_cpu(cpu, lowest_mask))
|
|
return cpu;
|
|
|
|
/*
|
|
* Otherwise, we consult the sched_domains span maps to figure
|
|
* out which CPU is logically closest to our hot cache data.
|
|
*/
|
|
if (!cpumask_test_cpu(this_cpu, lowest_mask))
|
|
this_cpu = -1; /* Skip this_cpu opt if not among lowest */
|
|
|
|
rcu_read_lock();
|
|
for_each_domain(cpu, sd) {
|
|
if (sd->flags & SD_WAKE_AFFINE) {
|
|
int best_cpu;
|
|
|
|
/*
|
|
* "this_cpu" is cheaper to preempt than a
|
|
* remote processor.
|
|
*/
|
|
if (this_cpu != -1 &&
|
|
cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
|
|
rcu_read_unlock();
|
|
return this_cpu;
|
|
}
|
|
|
|
best_cpu = cpumask_any_and_distribute(lowest_mask,
|
|
sched_domain_span(sd));
|
|
if (best_cpu < nr_cpu_ids) {
|
|
rcu_read_unlock();
|
|
return best_cpu;
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* And finally, if there were no matches within the domains
|
|
* just give the caller *something* to work with from the compatible
|
|
* locations.
|
|
*/
|
|
if (this_cpu != -1)
|
|
return this_cpu;
|
|
|
|
cpu = cpumask_any_distribute(lowest_mask);
|
|
if (cpu < nr_cpu_ids)
|
|
return cpu;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Will lock the rq it finds */
|
|
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
|
|
{
|
|
struct rq *lowest_rq = NULL;
|
|
int tries;
|
|
int cpu;
|
|
|
|
for (tries = 0; tries < RT_MAX_TRIES; tries++) {
|
|
cpu = find_lowest_rq(task);
|
|
|
|
if ((cpu == -1) || (cpu == rq->cpu))
|
|
break;
|
|
|
|
lowest_rq = cpu_rq(cpu);
|
|
|
|
if (lowest_rq->rt.highest_prio.curr <= task->prio) {
|
|
/*
|
|
* Target rq has tasks of equal or higher priority,
|
|
* retrying does not release any lock and is unlikely
|
|
* to yield a different result.
|
|
*/
|
|
lowest_rq = NULL;
|
|
break;
|
|
}
|
|
|
|
/* if the prio of this runqueue changed, try again */
|
|
if (double_lock_balance(rq, lowest_rq)) {
|
|
/*
|
|
* We had to unlock the run queue. In
|
|
* the mean time, task could have
|
|
* migrated already or had its affinity changed.
|
|
* Also make sure that it wasn't scheduled on its rq.
|
|
*/
|
|
if (unlikely(task_rq(task) != rq ||
|
|
!cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
|
|
task_on_cpu(rq, task) ||
|
|
!rt_task(task) ||
|
|
!task_on_rq_queued(task))) {
|
|
|
|
double_unlock_balance(rq, lowest_rq);
|
|
lowest_rq = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If this rq is still suitable use it. */
|
|
if (lowest_rq->rt.highest_prio.curr > task->prio)
|
|
break;
|
|
|
|
/* try again */
|
|
double_unlock_balance(rq, lowest_rq);
|
|
lowest_rq = NULL;
|
|
}
|
|
|
|
return lowest_rq;
|
|
}
|
|
|
|
static struct task_struct *pick_next_pushable_task(struct rq *rq)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
if (!has_pushable_tasks(rq))
|
|
return NULL;
|
|
|
|
p = plist_first_entry(&rq->rt.pushable_tasks,
|
|
struct task_struct, pushable_tasks);
|
|
|
|
BUG_ON(rq->cpu != task_cpu(p));
|
|
BUG_ON(task_current(rq, p));
|
|
BUG_ON(p->nr_cpus_allowed <= 1);
|
|
|
|
BUG_ON(!task_on_rq_queued(p));
|
|
BUG_ON(!rt_task(p));
|
|
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* If the current CPU has more than one RT task, see if the non
|
|
* running task can migrate over to a CPU that is running a task
|
|
* of lesser priority.
|
|
*/
|
|
static int push_rt_task(struct rq *rq, bool pull)
|
|
{
|
|
struct task_struct *next_task;
|
|
struct rq *lowest_rq;
|
|
int ret = 0;
|
|
|
|
if (!rq->rt.overloaded)
|
|
return 0;
|
|
|
|
next_task = pick_next_pushable_task(rq);
|
|
if (!next_task)
|
|
return 0;
|
|
|
|
retry:
|
|
/*
|
|
* It's possible that the next_task slipped in of
|
|
* higher priority than current. If that's the case
|
|
* just reschedule current.
|
|
*/
|
|
if (unlikely(next_task->prio < rq->curr->prio)) {
|
|
resched_curr(rq);
|
|
return 0;
|
|
}
|
|
|
|
if (is_migration_disabled(next_task)) {
|
|
struct task_struct *push_task = NULL;
|
|
int cpu;
|
|
|
|
if (!pull || rq->push_busy)
|
|
return 0;
|
|
|
|
/*
|
|
* Invoking find_lowest_rq() on anything but an RT task doesn't
|
|
* make sense. Per the above priority check, curr has to
|
|
* be of higher priority than next_task, so no need to
|
|
* reschedule when bailing out.
|
|
*
|
|
* Note that the stoppers are masqueraded as SCHED_FIFO
|
|
* (cf. sched_set_stop_task()), so we can't rely on rt_task().
|
|
*/
|
|
if (rq->curr->sched_class != &rt_sched_class)
|
|
return 0;
|
|
|
|
cpu = find_lowest_rq(rq->curr);
|
|
if (cpu == -1 || cpu == rq->cpu)
|
|
return 0;
|
|
|
|
/*
|
|
* Given we found a CPU with lower priority than @next_task,
|
|
* therefore it should be running. However we cannot migrate it
|
|
* to this other CPU, instead attempt to push the current
|
|
* running task on this CPU away.
|
|
*/
|
|
push_task = get_push_task(rq);
|
|
if (push_task) {
|
|
raw_spin_rq_unlock(rq);
|
|
stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
|
|
push_task, &rq->push_work);
|
|
raw_spin_rq_lock(rq);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (WARN_ON(next_task == rq->curr))
|
|
return 0;
|
|
|
|
/* We might release rq lock */
|
|
get_task_struct(next_task);
|
|
|
|
/* find_lock_lowest_rq locks the rq if found */
|
|
lowest_rq = find_lock_lowest_rq(next_task, rq);
|
|
if (!lowest_rq) {
|
|
struct task_struct *task;
|
|
/*
|
|
* find_lock_lowest_rq releases rq->lock
|
|
* so it is possible that next_task has migrated.
|
|
*
|
|
* We need to make sure that the task is still on the same
|
|
* run-queue and is also still the next task eligible for
|
|
* pushing.
|
|
*/
|
|
task = pick_next_pushable_task(rq);
|
|
if (task == next_task) {
|
|
/*
|
|
* The task hasn't migrated, and is still the next
|
|
* eligible task, but we failed to find a run-queue
|
|
* to push it to. Do not retry in this case, since
|
|
* other CPUs will pull from us when ready.
|
|
*/
|
|
goto out;
|
|
}
|
|
|
|
if (!task)
|
|
/* No more tasks, just exit */
|
|
goto out;
|
|
|
|
/*
|
|
* Something has shifted, try again.
|
|
*/
|
|
put_task_struct(next_task);
|
|
next_task = task;
|
|
goto retry;
|
|
}
|
|
|
|
deactivate_task(rq, next_task, 0);
|
|
set_task_cpu(next_task, lowest_rq->cpu);
|
|
activate_task(lowest_rq, next_task, 0);
|
|
resched_curr(lowest_rq);
|
|
ret = 1;
|
|
|
|
double_unlock_balance(rq, lowest_rq);
|
|
out:
|
|
put_task_struct(next_task);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void push_rt_tasks(struct rq *rq)
|
|
{
|
|
/* push_rt_task will return true if it moved an RT */
|
|
while (push_rt_task(rq, false))
|
|
;
|
|
}
|
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
|
|
/*
|
|
* When a high priority task schedules out from a CPU and a lower priority
|
|
* task is scheduled in, a check is made to see if there's any RT tasks
|
|
* on other CPUs that are waiting to run because a higher priority RT task
|
|
* is currently running on its CPU. In this case, the CPU with multiple RT
|
|
* tasks queued on it (overloaded) needs to be notified that a CPU has opened
|
|
* up that may be able to run one of its non-running queued RT tasks.
|
|
*
|
|
* All CPUs with overloaded RT tasks need to be notified as there is currently
|
|
* no way to know which of these CPUs have the highest priority task waiting
|
|
* to run. Instead of trying to take a spinlock on each of these CPUs,
|
|
* which has shown to cause large latency when done on machines with many
|
|
* CPUs, sending an IPI to the CPUs to have them push off the overloaded
|
|
* RT tasks waiting to run.
|
|
*
|
|
* Just sending an IPI to each of the CPUs is also an issue, as on large
|
|
* count CPU machines, this can cause an IPI storm on a CPU, especially
|
|
* if its the only CPU with multiple RT tasks queued, and a large number
|
|
* of CPUs scheduling a lower priority task at the same time.
|
|
*
|
|
* Each root domain has its own irq work function that can iterate over
|
|
* all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
|
|
* task must be checked if there's one or many CPUs that are lowering
|
|
* their priority, there's a single irq work iterator that will try to
|
|
* push off RT tasks that are waiting to run.
|
|
*
|
|
* When a CPU schedules a lower priority task, it will kick off the
|
|
* irq work iterator that will jump to each CPU with overloaded RT tasks.
|
|
* As it only takes the first CPU that schedules a lower priority task
|
|
* to start the process, the rto_start variable is incremented and if
|
|
* the atomic result is one, then that CPU will try to take the rto_lock.
|
|
* This prevents high contention on the lock as the process handles all
|
|
* CPUs scheduling lower priority tasks.
|
|
*
|
|
* All CPUs that are scheduling a lower priority task will increment the
|
|
* rt_loop_next variable. This will make sure that the irq work iterator
|
|
* checks all RT overloaded CPUs whenever a CPU schedules a new lower
|
|
* priority task, even if the iterator is in the middle of a scan. Incrementing
|
|
* the rt_loop_next will cause the iterator to perform another scan.
|
|
*
|
|
*/
|
|
static int rto_next_cpu(struct root_domain *rd)
|
|
{
|
|
int next;
|
|
int cpu;
|
|
|
|
/*
|
|
* When starting the IPI RT pushing, the rto_cpu is set to -1,
|
|
* rt_next_cpu() will simply return the first CPU found in
|
|
* the rto_mask.
|
|
*
|
|
* If rto_next_cpu() is called with rto_cpu is a valid CPU, it
|
|
* will return the next CPU found in the rto_mask.
|
|
*
|
|
* If there are no more CPUs left in the rto_mask, then a check is made
|
|
* against rto_loop and rto_loop_next. rto_loop is only updated with
|
|
* the rto_lock held, but any CPU may increment the rto_loop_next
|
|
* without any locking.
|
|
*/
|
|
for (;;) {
|
|
|
|
/* When rto_cpu is -1 this acts like cpumask_first() */
|
|
cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
|
|
|
|
/* this will be any CPU in the rd->rto_mask, and can be a halted cpu update it */
|
|
trace_android_rvh_rto_next_cpu(rd->rto_cpu, rd->rto_mask, &cpu);
|
|
|
|
rd->rto_cpu = cpu;
|
|
|
|
if (cpu < nr_cpu_ids)
|
|
return cpu;
|
|
|
|
rd->rto_cpu = -1;
|
|
|
|
/*
|
|
* ACQUIRE ensures we see the @rto_mask changes
|
|
* made prior to the @next value observed.
|
|
*
|
|
* Matches WMB in rt_set_overload().
|
|
*/
|
|
next = atomic_read_acquire(&rd->rto_loop_next);
|
|
|
|
if (rd->rto_loop == next)
|
|
break;
|
|
|
|
rd->rto_loop = next;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static inline bool rto_start_trylock(atomic_t *v)
|
|
{
|
|
return !atomic_cmpxchg_acquire(v, 0, 1);
|
|
}
|
|
|
|
static inline void rto_start_unlock(atomic_t *v)
|
|
{
|
|
atomic_set_release(v, 0);
|
|
}
|
|
|
|
static void tell_cpu_to_push(struct rq *rq)
|
|
{
|
|
int cpu = -1;
|
|
|
|
/* Keep the loop going if the IPI is currently active */
|
|
atomic_inc(&rq->rd->rto_loop_next);
|
|
|
|
/* Only one CPU can initiate a loop at a time */
|
|
if (!rto_start_trylock(&rq->rd->rto_loop_start))
|
|
return;
|
|
|
|
raw_spin_lock(&rq->rd->rto_lock);
|
|
|
|
/*
|
|
* The rto_cpu is updated under the lock, if it has a valid CPU
|
|
* then the IPI is still running and will continue due to the
|
|
* update to loop_next, and nothing needs to be done here.
|
|
* Otherwise it is finishing up and an ipi needs to be sent.
|
|
*/
|
|
if (rq->rd->rto_cpu < 0)
|
|
cpu = rto_next_cpu(rq->rd);
|
|
|
|
raw_spin_unlock(&rq->rd->rto_lock);
|
|
|
|
rto_start_unlock(&rq->rd->rto_loop_start);
|
|
|
|
if (cpu >= 0) {
|
|
/* Make sure the rd does not get freed while pushing */
|
|
sched_get_rd(rq->rd);
|
|
irq_work_queue_on(&rq->rd->rto_push_work, cpu);
|
|
}
|
|
}
|
|
|
|
/* Called from hardirq context */
|
|
void rto_push_irq_work_func(struct irq_work *work)
|
|
{
|
|
struct root_domain *rd =
|
|
container_of(work, struct root_domain, rto_push_work);
|
|
struct rq *rq;
|
|
int cpu;
|
|
|
|
rq = this_rq();
|
|
|
|
/*
|
|
* We do not need to grab the lock to check for has_pushable_tasks.
|
|
* When it gets updated, a check is made if a push is possible.
|
|
*/
|
|
if (has_pushable_tasks(rq)) {
|
|
raw_spin_rq_lock(rq);
|
|
while (push_rt_task(rq, true))
|
|
;
|
|
raw_spin_rq_unlock(rq);
|
|
}
|
|
|
|
raw_spin_lock(&rd->rto_lock);
|
|
|
|
/* Pass the IPI to the next rt overloaded queue */
|
|
cpu = rto_next_cpu(rd);
|
|
|
|
raw_spin_unlock(&rd->rto_lock);
|
|
|
|
if (cpu < 0) {
|
|
sched_put_rd(rd);
|
|
return;
|
|
}
|
|
|
|
/* Try the next RT overloaded CPU */
|
|
irq_work_queue_on(&rd->rto_push_work, cpu);
|
|
}
|
|
#endif /* HAVE_RT_PUSH_IPI */
|
|
|
|
static void pull_rt_task(struct rq *this_rq)
|
|
{
|
|
int this_cpu = this_rq->cpu, cpu;
|
|
bool resched = false;
|
|
struct task_struct *p, *push_task;
|
|
struct rq *src_rq;
|
|
int rt_overload_count = rt_overloaded(this_rq);
|
|
|
|
if (likely(!rt_overload_count))
|
|
return;
|
|
|
|
/*
|
|
* Match the barrier from rt_set_overloaded; this guarantees that if we
|
|
* see overloaded we must also see the rto_mask bit.
|
|
*/
|
|
smp_rmb();
|
|
|
|
/* If we are the only overloaded CPU do nothing */
|
|
if (rt_overload_count == 1 &&
|
|
cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
|
|
return;
|
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
if (sched_feat(RT_PUSH_IPI)) {
|
|
tell_cpu_to_push(this_rq);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
for_each_cpu(cpu, this_rq->rd->rto_mask) {
|
|
if (this_cpu == cpu)
|
|
continue;
|
|
|
|
src_rq = cpu_rq(cpu);
|
|
|
|
/*
|
|
* Don't bother taking the src_rq->lock if the next highest
|
|
* task is known to be lower-priority than our current task.
|
|
* This may look racy, but if this value is about to go
|
|
* logically higher, the src_rq will push this task away.
|
|
* And if its going logically lower, we do not care
|
|
*/
|
|
if (src_rq->rt.highest_prio.next >=
|
|
this_rq->rt.highest_prio.curr)
|
|
continue;
|
|
|
|
/*
|
|
* We can potentially drop this_rq's lock in
|
|
* double_lock_balance, and another CPU could
|
|
* alter this_rq
|
|
*/
|
|
push_task = NULL;
|
|
double_lock_balance(this_rq, src_rq);
|
|
|
|
/*
|
|
* We can pull only a task, which is pushable
|
|
* on its rq, and no others.
|
|
*/
|
|
p = pick_highest_pushable_task(src_rq, this_cpu);
|
|
|
|
/*
|
|
* Do we have an RT task that preempts
|
|
* the to-be-scheduled task?
|
|
*/
|
|
if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
|
|
WARN_ON(p == src_rq->curr);
|
|
WARN_ON(!task_on_rq_queued(p));
|
|
|
|
/*
|
|
* There's a chance that p is higher in priority
|
|
* than what's currently running on its CPU.
|
|
* This is just that p is waking up and hasn't
|
|
* had a chance to schedule. We only pull
|
|
* p if it is lower in priority than the
|
|
* current task on the run queue
|
|
*/
|
|
if (p->prio < src_rq->curr->prio)
|
|
goto skip;
|
|
|
|
if (is_migration_disabled(p)) {
|
|
push_task = get_push_task(src_rq);
|
|
} else {
|
|
deactivate_task(src_rq, p, 0);
|
|
set_task_cpu(p, this_cpu);
|
|
activate_task(this_rq, p, 0);
|
|
resched = true;
|
|
}
|
|
/*
|
|
* We continue with the search, just in
|
|
* case there's an even higher prio task
|
|
* in another runqueue. (low likelihood
|
|
* but possible)
|
|
*/
|
|
}
|
|
skip:
|
|
double_unlock_balance(this_rq, src_rq);
|
|
|
|
if (push_task) {
|
|
raw_spin_rq_unlock(this_rq);
|
|
stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
|
|
push_task, &src_rq->push_work);
|
|
raw_spin_rq_lock(this_rq);
|
|
}
|
|
}
|
|
|
|
if (resched)
|
|
resched_curr(this_rq);
|
|
}
|
|
|
|
/*
|
|
* If we are not running and we are not going to reschedule soon, we should
|
|
* try to push tasks away now
|
|
*/
|
|
static void task_woken_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
bool need_to_push = !task_on_cpu(rq, p) &&
|
|
!test_tsk_need_resched(rq->curr) &&
|
|
p->nr_cpus_allowed > 1 &&
|
|
(dl_task(rq->curr) || rt_task(rq->curr)) &&
|
|
(rq->curr->nr_cpus_allowed < 2 ||
|
|
rq->curr->prio <= p->prio);
|
|
|
|
if (need_to_push)
|
|
push_rt_tasks(rq);
|
|
}
|
|
|
|
/* Assumes rq->lock is held */
|
|
static void rq_online_rt(struct rq *rq)
|
|
{
|
|
if (rq->rt.overloaded)
|
|
rt_set_overload(rq);
|
|
|
|
__enable_runtime(rq);
|
|
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
|
|
}
|
|
|
|
/* Assumes rq->lock is held */
|
|
static void rq_offline_rt(struct rq *rq)
|
|
{
|
|
if (rq->rt.overloaded)
|
|
rt_clear_overload(rq);
|
|
|
|
__disable_runtime(rq);
|
|
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
|
|
}
|
|
|
|
/*
|
|
* When switch from the rt queue, we bring ourselves to a position
|
|
* that we might want to pull RT tasks from other runqueues.
|
|
*/
|
|
static void switched_from_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
/*
|
|
* If there are other RT tasks then we will reschedule
|
|
* and the scheduling of the other RT tasks will handle
|
|
* the balancing. But if we are the last RT task
|
|
* we may need to handle the pulling of RT tasks
|
|
* now.
|
|
*/
|
|
if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
|
|
return;
|
|
|
|
rt_queue_pull_task(rq);
|
|
}
|
|
|
|
void __init init_sched_rt_class(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
|
|
GFP_KERNEL, cpu_to_node(i));
|
|
}
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* When switching a task to RT, we may overload the runqueue
|
|
* with RT tasks. In this case we try to push them off to
|
|
* other runqueues.
|
|
*/
|
|
static void switched_to_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
/*
|
|
* If we are running, update the avg_rt tracking, as the running time
|
|
* will now on be accounted into the latter.
|
|
*/
|
|
if (task_current(rq, p)) {
|
|
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we are not running we may need to preempt the current
|
|
* running task. If that current running task is also an RT task
|
|
* then see if we can move to another run queue.
|
|
*/
|
|
if (task_on_rq_queued(p)) {
|
|
#ifdef CONFIG_SMP
|
|
if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
|
|
rt_queue_push_tasks(rq);
|
|
#endif /* CONFIG_SMP */
|
|
if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
|
|
resched_curr(rq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Priority of the task has changed. This may cause
|
|
* us to initiate a push or pull.
|
|
*/
|
|
static void
|
|
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
|
|
{
|
|
if (!task_on_rq_queued(p))
|
|
return;
|
|
|
|
if (task_current(rq, p)) {
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* If our priority decreases while running, we
|
|
* may need to pull tasks to this runqueue.
|
|
*/
|
|
if (oldprio < p->prio)
|
|
rt_queue_pull_task(rq);
|
|
|
|
/*
|
|
* If there's a higher priority task waiting to run
|
|
* then reschedule.
|
|
*/
|
|
if (p->prio > rq->rt.highest_prio.curr)
|
|
resched_curr(rq);
|
|
#else
|
|
/* For UP simply resched on drop of prio */
|
|
if (oldprio < p->prio)
|
|
resched_curr(rq);
|
|
#endif /* CONFIG_SMP */
|
|
} else {
|
|
/*
|
|
* This task is not running, but if it is
|
|
* greater than the current running task
|
|
* then reschedule.
|
|
*/
|
|
if (p->prio < rq->curr->prio)
|
|
resched_curr(rq);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
static void watchdog(struct rq *rq, struct task_struct *p)
|
|
{
|
|
unsigned long soft, hard;
|
|
|
|
/* max may change after cur was read, this will be fixed next tick */
|
|
soft = task_rlimit(p, RLIMIT_RTTIME);
|
|
hard = task_rlimit_max(p, RLIMIT_RTTIME);
|
|
|
|
if (soft != RLIM_INFINITY) {
|
|
unsigned long next;
|
|
|
|
if (p->rt.watchdog_stamp != jiffies) {
|
|
p->rt.timeout++;
|
|
p->rt.watchdog_stamp = jiffies;
|
|
}
|
|
|
|
next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
|
|
if (p->rt.timeout > next) {
|
|
posix_cputimers_rt_watchdog(&p->posix_cputimers,
|
|
p->se.sum_exec_runtime);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static inline void watchdog(struct rq *rq, struct task_struct *p) { }
|
|
#endif
|
|
|
|
/*
|
|
* scheduler tick hitting a task of our scheduling class.
|
|
*
|
|
* NOTE: This function can be called remotely by the tick offload that
|
|
* goes along full dynticks. Therefore no local assumption can be made
|
|
* and everything must be accessed through the @rq and @curr passed in
|
|
* parameters.
|
|
*/
|
|
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
|
|
update_curr_rt(rq);
|
|
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
|
|
|
|
watchdog(rq, p);
|
|
|
|
/*
|
|
* RR tasks need a special form of timeslice management.
|
|
* FIFO tasks have no timeslices.
|
|
*/
|
|
if (p->policy != SCHED_RR)
|
|
return;
|
|
|
|
if (--p->rt.time_slice)
|
|
return;
|
|
|
|
p->rt.time_slice = sched_rr_timeslice;
|
|
|
|
/*
|
|
* Requeue to the end of queue if we (and all of our ancestors) are not
|
|
* the only element on the queue
|
|
*/
|
|
for_each_sched_rt_entity(rt_se) {
|
|
if (rt_se->run_list.prev != rt_se->run_list.next) {
|
|
requeue_task_rt(rq, p, 0);
|
|
resched_curr(rq);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
|
|
{
|
|
/*
|
|
* Time slice is 0 for SCHED_FIFO tasks
|
|
*/
|
|
if (task->policy == SCHED_RR)
|
|
return sched_rr_timeslice;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SCHED_CLASS(rt) = {
|
|
|
|
.enqueue_task = enqueue_task_rt,
|
|
.dequeue_task = dequeue_task_rt,
|
|
.yield_task = yield_task_rt,
|
|
|
|
.check_preempt_curr = check_preempt_curr_rt,
|
|
|
|
.pick_next_task = pick_next_task_rt,
|
|
.put_prev_task = put_prev_task_rt,
|
|
.set_next_task = set_next_task_rt,
|
|
|
|
#ifdef CONFIG_SMP
|
|
.balance = balance_rt,
|
|
.pick_task = pick_task_rt,
|
|
.select_task_rq = select_task_rq_rt,
|
|
.set_cpus_allowed = set_cpus_allowed_common,
|
|
.rq_online = rq_online_rt,
|
|
.rq_offline = rq_offline_rt,
|
|
.task_woken = task_woken_rt,
|
|
.switched_from = switched_from_rt,
|
|
.find_lock_rq = find_lock_lowest_rq,
|
|
#endif
|
|
|
|
.task_tick = task_tick_rt,
|
|
|
|
.get_rr_interval = get_rr_interval_rt,
|
|
|
|
.prio_changed = prio_changed_rt,
|
|
.switched_to = switched_to_rt,
|
|
|
|
.update_curr = update_curr_rt,
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
.uclamp_enabled = 1,
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* Ensure that the real time constraints are schedulable.
|
|
*/
|
|
static DEFINE_MUTEX(rt_constraints_mutex);
|
|
|
|
static inline int tg_has_rt_tasks(struct task_group *tg)
|
|
{
|
|
struct task_struct *task;
|
|
struct css_task_iter it;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Autogroups do not have RT tasks; see autogroup_create().
|
|
*/
|
|
if (task_group_is_autogroup(tg))
|
|
return 0;
|
|
|
|
css_task_iter_start(&tg->css, 0, &it);
|
|
while (!ret && (task = css_task_iter_next(&it)))
|
|
ret |= rt_task(task);
|
|
css_task_iter_end(&it);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct rt_schedulable_data {
|
|
struct task_group *tg;
|
|
u64 rt_period;
|
|
u64 rt_runtime;
|
|
};
|
|
|
|
static int tg_rt_schedulable(struct task_group *tg, void *data)
|
|
{
|
|
struct rt_schedulable_data *d = data;
|
|
struct task_group *child;
|
|
unsigned long total, sum = 0;
|
|
u64 period, runtime;
|
|
|
|
period = ktime_to_ns(tg->rt_bandwidth.rt_period);
|
|
runtime = tg->rt_bandwidth.rt_runtime;
|
|
|
|
if (tg == d->tg) {
|
|
period = d->rt_period;
|
|
runtime = d->rt_runtime;
|
|
}
|
|
|
|
/*
|
|
* Cannot have more runtime than the period.
|
|
*/
|
|
if (runtime > period && runtime != RUNTIME_INF)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Ensure we don't starve existing RT tasks if runtime turns zero.
|
|
*/
|
|
if (rt_bandwidth_enabled() && !runtime &&
|
|
tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
|
|
return -EBUSY;
|
|
|
|
total = to_ratio(period, runtime);
|
|
|
|
/*
|
|
* Nobody can have more than the global setting allows.
|
|
*/
|
|
if (total > to_ratio(global_rt_period(), global_rt_runtime()))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The sum of our children's runtime should not exceed our own.
|
|
*/
|
|
list_for_each_entry_rcu(child, &tg->children, siblings) {
|
|
period = ktime_to_ns(child->rt_bandwidth.rt_period);
|
|
runtime = child->rt_bandwidth.rt_runtime;
|
|
|
|
if (child == d->tg) {
|
|
period = d->rt_period;
|
|
runtime = d->rt_runtime;
|
|
}
|
|
|
|
sum += to_ratio(period, runtime);
|
|
}
|
|
|
|
if (sum > total)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
|
|
{
|
|
int ret;
|
|
|
|
struct rt_schedulable_data data = {
|
|
.tg = tg,
|
|
.rt_period = period,
|
|
.rt_runtime = runtime,
|
|
};
|
|
|
|
rcu_read_lock();
|
|
ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int tg_set_rt_bandwidth(struct task_group *tg,
|
|
u64 rt_period, u64 rt_runtime)
|
|
{
|
|
int i, err = 0;
|
|
|
|
/*
|
|
* Disallowing the root group RT runtime is BAD, it would disallow the
|
|
* kernel creating (and or operating) RT threads.
|
|
*/
|
|
if (tg == &root_task_group && rt_runtime == 0)
|
|
return -EINVAL;
|
|
|
|
/* No period doesn't make any sense. */
|
|
if (rt_period == 0)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Bound quota to defend quota against overflow during bandwidth shift.
|
|
*/
|
|
if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&rt_constraints_mutex);
|
|
err = __rt_schedulable(tg, rt_period, rt_runtime);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
|
|
tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
|
|
tg->rt_bandwidth.rt_runtime = rt_runtime;
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct rt_rq *rt_rq = tg->rt_rq[i];
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
rt_rq->rt_runtime = rt_runtime;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
}
|
|
raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
|
|
unlock:
|
|
mutex_unlock(&rt_constraints_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
|
|
{
|
|
u64 rt_runtime, rt_period;
|
|
|
|
rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
|
|
rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
|
|
if (rt_runtime_us < 0)
|
|
rt_runtime = RUNTIME_INF;
|
|
else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
|
|
return -EINVAL;
|
|
|
|
return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
|
|
}
|
|
|
|
long sched_group_rt_runtime(struct task_group *tg)
|
|
{
|
|
u64 rt_runtime_us;
|
|
|
|
if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
|
|
return -1;
|
|
|
|
rt_runtime_us = tg->rt_bandwidth.rt_runtime;
|
|
do_div(rt_runtime_us, NSEC_PER_USEC);
|
|
return rt_runtime_us;
|
|
}
|
|
|
|
int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
|
|
{
|
|
u64 rt_runtime, rt_period;
|
|
|
|
if (rt_period_us > U64_MAX / NSEC_PER_USEC)
|
|
return -EINVAL;
|
|
|
|
rt_period = rt_period_us * NSEC_PER_USEC;
|
|
rt_runtime = tg->rt_bandwidth.rt_runtime;
|
|
|
|
return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
|
|
}
|
|
|
|
long sched_group_rt_period(struct task_group *tg)
|
|
{
|
|
u64 rt_period_us;
|
|
|
|
rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
|
|
do_div(rt_period_us, NSEC_PER_USEC);
|
|
return rt_period_us;
|
|
}
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
static int sched_rt_global_constraints(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&rt_constraints_mutex);
|
|
ret = __rt_schedulable(NULL, 0, 0);
|
|
mutex_unlock(&rt_constraints_mutex);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
|
|
{
|
|
/* Don't accept realtime tasks when there is no way for them to run */
|
|
if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
#else /* !CONFIG_RT_GROUP_SCHED */
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
static int sched_rt_global_constraints(void)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
|
|
for_each_possible_cpu(i) {
|
|
struct rt_rq *rt_rq = &cpu_rq(i)->rt;
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
rt_rq->rt_runtime = global_rt_runtime();
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
}
|
|
raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_SYSCTL */
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
static int sched_rt_global_validate(void)
|
|
{
|
|
if (sysctl_sched_rt_period <= 0)
|
|
return -EINVAL;
|
|
|
|
if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
|
|
((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
|
|
((u64)sysctl_sched_rt_runtime *
|
|
NSEC_PER_USEC > max_rt_runtime)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sched_rt_do_global(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
|
|
def_rt_bandwidth.rt_runtime = global_rt_runtime();
|
|
def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
|
|
raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
|
|
}
|
|
|
|
static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
|
|
size_t *lenp, loff_t *ppos)
|
|
{
|
|
int old_period, old_runtime;
|
|
static DEFINE_MUTEX(mutex);
|
|
int ret;
|
|
|
|
mutex_lock(&mutex);
|
|
old_period = sysctl_sched_rt_period;
|
|
old_runtime = sysctl_sched_rt_runtime;
|
|
|
|
ret = proc_dointvec(table, write, buffer, lenp, ppos);
|
|
|
|
if (!ret && write) {
|
|
ret = sched_rt_global_validate();
|
|
if (ret)
|
|
goto undo;
|
|
|
|
ret = sched_dl_global_validate();
|
|
if (ret)
|
|
goto undo;
|
|
|
|
ret = sched_rt_global_constraints();
|
|
if (ret)
|
|
goto undo;
|
|
|
|
sched_rt_do_global();
|
|
sched_dl_do_global();
|
|
}
|
|
if (0) {
|
|
undo:
|
|
sysctl_sched_rt_period = old_period;
|
|
sysctl_sched_rt_runtime = old_runtime;
|
|
}
|
|
mutex_unlock(&mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
|
|
size_t *lenp, loff_t *ppos)
|
|
{
|
|
int ret;
|
|
static DEFINE_MUTEX(mutex);
|
|
|
|
mutex_lock(&mutex);
|
|
ret = proc_dointvec(table, write, buffer, lenp, ppos);
|
|
/*
|
|
* Make sure that internally we keep jiffies.
|
|
* Also, writing zero resets the timeslice to default:
|
|
*/
|
|
if (!ret && write) {
|
|
sched_rr_timeslice =
|
|
sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
|
|
msecs_to_jiffies(sysctl_sched_rr_timeslice);
|
|
}
|
|
mutex_unlock(&mutex);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
void print_rt_stats(struct seq_file *m, int cpu)
|
|
{
|
|
rt_rq_iter_t iter;
|
|
struct rt_rq *rt_rq;
|
|
|
|
rcu_read_lock();
|
|
for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
|
|
print_rt_rq(m, cpu, rt_rq);
|
|
rcu_read_unlock();
|
|
}
|
|
#endif /* CONFIG_SCHED_DEBUG */
|