#include "eval.hh" #include "hash.hh" #include "util.hh" #include "store-api.hh" #include "derivations.hh" #include "globals.hh" #include "eval-inline.hh" #include "download.hh" #include "json.hh" #include #include #include #include #include #include #include #include #include namespace nix { SymbolTable symbols; unsigned long stringBytes = 0; // FIXME static char * dupString(const char * s) { char * t; stringBytes += strlen(s) + 1; t = strdup(s); if (!t) throw std::bad_alloc(); return t; } static void printValue(std::ostream & str, std::set & active, const Value & v) { checkInterrupt(); if (active.find(&v) != active.end()) { str << ""; return; } active.insert(&v); switch (v.type) { case tInt: str << v.integer; break; case tBool: str << (v.boolean ? "true" : "false"); break; case tShortString: case tStaticString: case tLongString: str << "\""; for (const char * i = v.getString(); *i; i++) if (*i == '\"' || *i == '\\') str << "\\" << *i; else if (*i == '\n') str << "\\n"; else if (*i == '\r') str << "\\r"; else if (*i == '\t') str << "\\t"; else str << *i; str << "\""; break; case tPath: str << v.path; // !!! escaping? break; case tNull: str << "null"; break; case tAttrs: { str << "{ "; for (auto & i : v.attrs->lexicographicOrder()) { str << i->name << " = "; printValue(str, active, *i->value); str << "; "; } str << "}"; break; } case tList0: case tList1: case tList2: case tListN: str << "[ "; for (unsigned int n = 0; n < v.listSize(); ++n) { printValue(str, active, *v.listElems()[n]); str << " "; } str << "]"; break; case tThunk: case tApp: str << ""; break; case tLambda: str << ""; break; case tPrimOp: str << ""; break; case tPrimOpApp: str << ""; break; #if 0 case tExternal: str << *v.external; break; #endif case tFloat: str << v.fpoint; break; default: throw Error("invalid value"); } active.erase(&v); } std::ostream & operator << (std::ostream & str, const Value & v) { std::set active; printValue(str, active, v); return str; } const Value * getPrimOp(const Value & v) { const Value * primOp = &v; while (primOp->type == tPrimOpApp) { primOp = primOp->app.left; } assert(primOp->type == tPrimOp); return primOp; } string showType(const Value & v) { switch (v.type) { case tInt: return "an integer"; case tBool: return "a boolean"; case tShortString: case tStaticString: return "a string"; case tLongString: return v.string.context ? "a string with context" : "a string"; case tPath: return "a path"; case tNull: return "null"; case tAttrs: return "a set"; case tList0: case tList1: case tList2: case tListN: return "a list"; case tThunk: return "a thunk"; case tApp: return "a function application"; case tLambda: return "a function"; case tBlackhole: return "a black hole"; case tPrimOp: return fmt("the built-in function '%s'", string(v.primOp->name)); case tPrimOpApp: return fmt("the partially applied built-in function '%s'", string(getPrimOp(v)->primOp->name)); #if 0 case tExternal: return v.external->showType(); #endif case tFloat: return "a float"; default: abort(); } } static Symbol getName(const AttrName & name, EvalState & state, Env & env) { if (name.symbol.set()) { return name.symbol; } else { Root nameValue; name.expr->eval(state, env, nameValue); return state.symbols.create(state.forceStringNoCtx(nameValue)); } } /* Very hacky way to parse $NIX_PATH, which is colon-separated, but can contain URLs (e.g. "nixpkgs=https://bla...:foo=https://"). */ static Strings parseNixPath(const string & s) { Strings res; auto p = s.begin(); while (p != s.end()) { auto start = p; auto start2 = p; while (p != s.end() && *p != ':') { if (*p == '=') start2 = p + 1; ++p; } if (p == s.end()) { if (p != start) res.push_back(std::string(start, p)); break; } if (*p == ':') { if (isUri(std::string(start2, s.end()))) { ++p; while (p != s.end() && *p != ':') ++p; } res.push_back(std::string(start, p)); if (p == s.end()) break; } ++p; } return res; } EvalState::EvalState(const Strings & _searchPath, ref store) : sWith(symbols.create("")) , sOutPath(symbols.create("outPath")) , sDrvPath(symbols.create("drvPath")) , sType(symbols.create("type")) , sMeta(symbols.create("meta")) , sName(symbols.create("name")) , sValue(symbols.create("value")) , sSystem(symbols.create("system")) , sOverrides(symbols.create("__overrides")) , sOutputs(symbols.create("outputs")) , sOutputName(symbols.create("outputName")) , sIgnoreNulls(symbols.create("__ignoreNulls")) , sFile(symbols.create("file")) , sLine(symbols.create("line")) , sColumn(symbols.create("column")) , sFunctor(symbols.create("__functor")) , sToString(symbols.create("__toString")) , sRight(symbols.create("right")) , sWrong(symbols.create("wrong")) , sStructuredAttrs(symbols.create("__structuredAttrs")) , sBuilder(symbols.create("builder")) , sArgs(symbols.create("args")) , sOutputHash(symbols.create("outputHash")) , sOutputHashAlgo(symbols.create("outputHashAlgo")) , sOutputHashMode(symbols.create("outputHashMode")) , repair(NoRepair) , store(store) , baseEnv(allocEnv(128)) , staticBaseEnv(false, 0) { countCalls = getEnv("NIX_COUNT_CALLS", "0") != "0"; static_assert(sizeof(Env) <= 16, "environment must be <= 16 bytes"); /* Initialise the Nix expression search path. */ if (!evalSettings.pureEval) { Strings paths = parseNixPath(getEnv("NIX_PATH", "")); for (auto & i : _searchPath) addToSearchPath(i); for (auto & i : paths) addToSearchPath(i); } addToSearchPath("nix=" + canonPath(settings.nixDataDir + "/nix/corepkgs", true)); if (evalSettings.restrictEval || evalSettings.pureEval) { allowedPaths = PathSet(); for (auto & i : searchPath) { auto r = resolveSearchPathElem(i); if (!r.first) continue; auto path = r.second; if (store->isInStore(r.second)) { PathSet closure; store->computeFSClosure(store->toStorePath(r.second), closure); for (auto & path : closure) allowedPaths->insert(path); } else allowedPaths->insert(r.second); } } emptyBindings = Bindings::allocBindings(0); createBaseEnv(); } EvalState::~EvalState() { } Path EvalState::checkSourcePath(const Path & path_) { if (!allowedPaths) return path_; auto i = resolvedPaths.find(path_); if (i != resolvedPaths.end()) return i->second; bool found = false; /* First canonicalize the path without symlinks, so we make sure an * attacker can't append ../../... to a path that would be in allowedPaths * and thus leak symlink targets. */ Path abspath = canonPath(path_); for (auto & i : *allowedPaths) { if (isDirOrInDir(abspath, i)) { found = true; break; } } if (!found) throw RestrictedPathError("access to path '%1%' is forbidden in restricted mode", abspath); /* Resolve symlinks. */ debug(format("checking access to '%s'") % abspath); Path path = canonPath(abspath, true); for (auto & i : *allowedPaths) { if (isDirOrInDir(path, i)) { resolvedPaths[path_] = path; return path; } } throw RestrictedPathError("access to path '%1%' is forbidden in restricted mode", path); } void EvalState::checkURI(const std::string & uri) { if (!evalSettings.restrictEval) return; /* 'uri' should be equal to a prefix, or in a subdirectory of a prefix. Thus, the prefix https://github.co does not permit access to https://github.com. Note: this allows 'http://' and 'https://' as prefixes for any http/https URI. */ for (auto & prefix : evalSettings.allowedUris.get()) if (uri == prefix || (uri.size() > prefix.size() && prefix.size() > 0 && hasPrefix(uri, prefix) && (prefix[prefix.size() - 1] == '/' || uri[prefix.size()] == '/'))) return; /* If the URI is a path, then check it against allowedPaths as well. */ if (hasPrefix(uri, "/")) { checkSourcePath(uri); return; } if (hasPrefix(uri, "file://")) { checkSourcePath(std::string(uri, 7)); return; } throw RestrictedPathError("access to URI '%s' is forbidden in restricted mode", uri); } Path EvalState::toRealPath(const Path & path, const PathSet & context) { // FIXME: check whether 'path' is in 'context'. return !context.empty() && store->isInStore(path) ? store->toRealPath(path) : path; }; Value * EvalState::addConstant(const string & name, Value & v) { auto v2 = allocValue(); *v2 = v; staticBaseEnv.vars[symbols.create(name)] = baseEnvDispl; baseEnv->values[baseEnvDispl++] = v2; string name2 = string(name, 0, 2) == "__" ? string(name, 2) : name; baseEnv->values[0]->attrs->push_back(Attr(symbols.create(name2), v2)); return v2; } Value * EvalState::addPrimOp(const string & name, size_t arity, PrimOpFun primOp) { if (arity == 0) { Root v; primOp(*this, noPos, nullptr, v); return addConstant(name, v); } auto v = allocValue(); string name2 = string(name, 0, 2) == "__" ? string(name, 2) : name; Symbol sym = symbols.create(name2); v->type = tPrimOp; v->primOp = new PrimOp(primOp, arity, sym); staticBaseEnv.vars[symbols.create(name)] = baseEnvDispl; baseEnv->values[baseEnvDispl++] = v; baseEnv->values[0]->attrs->push_back(Attr(sym, v)); return v; } Value & EvalState::getBuiltin(const string & name) { return *baseEnv->values[0]->attrs->find(symbols.create(name))->value; } /* Every "format" object (even temporary) takes up a few hundred bytes of stack space, which is a real killer in the recursive evaluator. So here are some helper functions for throwing exceptions. */ LocalNoInlineNoReturn(void throwEvalError(const char * s, const string & s2)) { throw EvalError(format(s) % s2); } LocalNoInlineNoReturn(void throwEvalError(const char * s, const string & s2, const Pos & pos)) { throw EvalError(format(s) % s2 % pos); } LocalNoInlineNoReturn(void throwEvalError(const char * s, const string & s2, const string & s3)) { throw EvalError(format(s) % s2 % s3); } LocalNoInlineNoReturn(void throwEvalError(const char * s, const string & s2, const string & s3, const Pos & pos)) { throw EvalError(format(s) % s2 % s3 % pos); } LocalNoInlineNoReturn(void throwEvalError(const char * s, const Symbol & sym, const Pos & p1, const Pos & p2)) { throw EvalError(format(s) % sym % p1 % p2); } LocalNoInlineNoReturn(void throwTypeError(const char * s, const Pos & pos)) { throw TypeError(format(s) % pos); } LocalNoInlineNoReturn(void throwTypeError(const char * s, const string & s1)) { throw TypeError(format(s) % s1); } LocalNoInlineNoReturn(void throwTypeError(const char * s, const ExprLambda & fun, const Symbol & s2, const Pos & pos)) { throw TypeError(format(s) % fun.showNamePos() % s2 % pos); } LocalNoInlineNoReturn(void throwAssertionError(const char * s, const Pos & pos)) { throw AssertionError(format(s) % pos); } LocalNoInlineNoReturn(void throwUndefinedVarError(const char * s, const string & s1, const Pos & pos)) { throw UndefinedVarError(format(s) % s1 % pos); } LocalNoInline(void addErrorPrefix(Error & e, const char * s, const string & s2)) { e.addPrefix(format(s) % s2); } LocalNoInline(void addErrorPrefix(Error & e, const char * s, const ExprLambda & fun, const Pos & pos)) { e.addPrefix(format(s) % fun.showNamePos() % pos); } LocalNoInline(void addErrorPrefix(Error & e, const char * s, const string & s2, const Pos & pos)) { e.addPrefix(format(s) % s2 % pos); } Value & mkString(Value & v, const string & s, const PathSet & context) { if (context.empty()) mkString(v, s.c_str()); else { v.string.s = String::alloc(s.c_str()); v.string.context = nullptr; v.type = tLongString; v.setContext(context); } return v; } void mkPath(Value & v, const char * s) { mkPathNoCopy(v, dupString(s)); } inline Value * EvalState::lookupVar(Env * env, const ExprVar & var, bool noEval) { for (size_t l = var.level; l; --l, env = env->up) ; if (!var.fromWith) { auto v = env->values[var.displ]; if (v) gc.assertObject(v); return v; } while (1) { if (env->type == tWithExprEnv) { if (noEval) return 0; auto v = allocValue(); evalAttrs(*env->up, (Expr *) env->values[0], *v); env->values[0] = v; env->type = tWithAttrsEnv; } Bindings::iterator j = env->values[0]->attrs->find(var.name); if (j != env->values[0]->attrs->end()) { if (countCalls && j->pos) attrSelects[*j->pos]++; gc.assertObject(j->value); return j->value; } if (!env->getPrevWith()) throwUndefinedVarError("undefined variable '%1%' at %2%", var.name, var.pos); for (size_t l = env->getPrevWith(); l; --l, env = env->up) ; } } Ptr EvalState::allocEnv(size_t size, size_t prevWith, Tag type) { nrEnvs++; nrValuesInEnvs += size; return gc.alloc(Env::wordsFor(size), type, size, prevWith); } void EvalState::mkList(Value & v, size_t size) { if (size == 0) v.type = tList0; else if (size == 1) { v.smallList[0] = nullptr; v.type = tList1; } else if (size == 2) { v.smallList[0] = nullptr; v.smallList[1] = nullptr; v.type = tList2; } else { v.bigList = gc.alloc>( PtrList::wordsFor(size), tValueList, size); v.type = tListN; } nrListElems += size; } unsigned long nrThunks = 0; static inline void mkThunk(Value & v, Env & env, Expr * expr) { v.type = tThunk; v.thunk.env = &env; v.thunk.expr = expr; nrThunks++; } void EvalState::mkThunk_(Value & v, Expr * expr) { mkThunk(v, baseEnv, expr); } void EvalState::mkPos(Value & v, Pos * pos) { if (pos && pos->file.set()) { mkAttrs(v, 3); mkString(*allocAttr(v, sFile), pos->file); mkInt(*allocAttr(v, sLine), pos->line); mkInt(*allocAttr(v, sColumn), pos->column); v.attrs->sort(); } else mkNull(v); } /* Create a thunk for the delayed computation of the given expression in the given environment. But if the expression is a variable or a constant, then look it up right away. This significantly reduces the number of thunks allocated. */ Ptr Expr::maybeThunk(EvalState & state, Env & env) { auto v = state.allocValue(); mkThunk(*v, env, this); return v; } unsigned long nrAvoided = 0; Ptr ExprVar::maybeThunk(EvalState & state, Env & env) { auto v = state.lookupVar(&env, *this, true); /* The value might not be initialised in the environment yet. In that case, ignore it. */ if (v) { nrAvoided++; return v; } return Expr::maybeThunk(state, env); } Ptr ExprString::maybeThunk(EvalState & state, Env & env) { nrAvoided++; return v; } Ptr ExprInt::maybeThunk(EvalState & state, Env & env) { nrAvoided++; return v; } Ptr ExprFloat::maybeThunk(EvalState & state, Env & env) { nrAvoided++; return v; } Ptr ExprPath::maybeThunk(EvalState & state, Env & env) { nrAvoided++; return v; } void EvalState::evalFile(const Path & path_, Value & v) { auto path = checkSourcePath(path_); FileEvalCache::iterator i; if ((i = fileEvalCache.find(path)) != fileEvalCache.end()) { v = *i->second; return; } Path path2 = resolveExprPath(path); if ((i = fileEvalCache.find(path2)) != fileEvalCache.end()) { v = *i->second; return; } printTalkative("evaluating file '%1%'", path2); Expr * e = nullptr; auto j = fileParseCache.find(path2); if (j != fileParseCache.end()) e = j->second; if (!e) e = parseExprFromFile(checkSourcePath(path2)); fileParseCache[path2] = e; try { auto v2 = allocValue(); eval(e, *v2); v = *v2; if (path != path2) fileEvalCache.emplace(path, v2); fileEvalCache.emplace(path2, std::move(v2)); } catch (Error & e) { addErrorPrefix(e, "while evaluating the file '%1%':\n", path2); throw; } } void EvalState::resetFileCache() { fileEvalCache.clear(); fileParseCache.clear(); } void EvalState::eval(Expr * e, Value & v) { e->eval(*this, baseEnv, v); } inline bool EvalState::evalBool(Env & env, Expr * e) { Root v; e->eval(*this, env, v); if (v->type != tBool) throwTypeError("value is %1% while a Boolean was expected", v); return v->boolean; } inline bool EvalState::evalBool(Env & env, Expr * e, const Pos & pos) { Root v; e->eval(*this, env, v); if (v->type != tBool) throwTypeError("value is %1% while a Boolean was expected, at %2%", v, pos); return v->boolean; } inline void EvalState::evalAttrs(Env & env, Expr * e, Value & v) { e->eval(*this, env, v); if (v.type != tAttrs) throwTypeError("value is %1% while a set was expected", v); } void Expr::eval(EvalState & state, Env & env, Value & v) { abort(); } void ExprInt::eval(EvalState & state, Env & env, Value & v) { v = *this->v; } void ExprFloat::eval(EvalState & state, Env & env, Value & v) { v = *this->v; } void ExprString::eval(EvalState & state, Env & env, Value & v) { v = *this->v; } void ExprPath::eval(EvalState & state, Env & env, Value & v) { v = *this->v; } void ExprAttrs::eval(EvalState & state, Env & env, Value & v) { state.mkAttrs(v, attrs.size() + dynamicAttrs.size()); Env * dynamicEnv = &env; if (recursive) { /* Create a new environment that contains the attributes in this `rec'. */ auto env2 = state.allocEnv(attrs.size()); env2->up = &env; dynamicEnv = &*env2; AttrDefs::iterator overrides = attrs.find(state.sOverrides); bool hasOverrides = overrides != attrs.end(); /* The recursive attributes are evaluated in the new environment, while the inherited attributes are evaluated in the original environment. */ size_t displ = 0; for (auto & i : attrs) { Ptr vAttr; // FIXME: Ptr unnecessary? if (hasOverrides && !i.second.inherited) { vAttr = state.allocValue(); // FIXME mkThunk(*vAttr, env2, i.second.e); } else vAttr = i.second.e->maybeThunk(state, i.second.inherited ? env : env2); env2->values[displ++] = vAttr; v.attrs->push_back(Attr(i.first, vAttr, &i.second.pos)); } /* If the rec contains an attribute called `__overrides', then evaluate it, and add the attributes in that set to the rec. This allows overriding of recursive attributes, which is otherwise not possible. (You can use the // operator to replace an attribute, but other attributes in the rec will still reference the original value, because that value has been substituted into the bodies of the other attributes. Hence we need __overrides.) */ if (hasOverrides) { Value * vOverrides = (*v.attrs)[overrides->second.displ].value; state.forceAttrs(*vOverrides); Bindings * newBnds = Bindings::allocBindings(v.attrs->size() + vOverrides->attrs->size()); for (auto & i : *v.attrs) newBnds->push_back(i); for (auto & i : *vOverrides->attrs) { AttrDefs::iterator j = attrs.find(i.name); if (j != attrs.end()) { (*newBnds)[j->second.displ] = i; env2->values[j->second.displ] = i.value; } else newBnds->push_back(i); } newBnds->sort(); v.attrs = newBnds; } } else for (auto & i : attrs) v.attrs->push_back(Attr(i.first, i.second.e->maybeThunk(state, env), &i.second.pos)); /* Dynamic attrs apply *after* rec and __overrides. */ for (auto & i : dynamicAttrs) { Root nameVal; i.nameExpr->eval(state, *dynamicEnv, nameVal); state.forceValue(nameVal, i.pos); if (nameVal->type == tNull) continue; Symbol nameSym = state.symbols.create(state.forceStringNoCtx(nameVal)); Bindings::iterator j = v.attrs->find(nameSym); if (j != v.attrs->end()) throwEvalError("dynamic attribute '%1%' at %2% already defined at %3%", nameSym, i.pos, *j->pos); i.valueExpr->setName(nameSym); /* Keep sorted order so find can catch duplicates */ v.attrs->push_back(Attr(nameSym, i.valueExpr->maybeThunk(state, *dynamicEnv), &i.pos)); v.attrs->sort(); // FIXME: inefficient } } void ExprLet::eval(EvalState & state, Env & env, Value & v) { /* Create a new environment that contains the attributes in this `let'. */ auto env2 = state.allocEnv(attrs->attrs.size()); env2->up = &env; /* The recursive attributes are evaluated in the new environment, while the inherited attributes are evaluated in the original environment. */ size_t displ = 0; for (auto & i : attrs->attrs) env2->values[displ++] = i.second.e->maybeThunk(state, i.second.inherited ? env : env2); body->eval(state, env2, v); } void ExprList::eval(EvalState & state, Env & env, Value & v) { state.mkList(v, elems.size()); for (size_t n = 0; n < elems.size(); ++n) v.listElems()[n] = elems[n]->maybeThunk(state, env); } void ExprVar::eval(EvalState & state, Env & env, Value & v) { Value * v2 = state.lookupVar(&env, *this, false); state.forceValue(*v2, pos); v = *v2; } static string showAttrPath(EvalState & state, Env & env, const AttrPath & attrPath) { std::ostringstream out; bool first = true; for (auto & i : attrPath) { if (!first) out << '.'; else first = false; try { out << getName(i, state, env); } catch (Error & e) { assert(!i.symbol.set()); out << "\"${" << *i.expr << "}\""; } } return out.str(); } unsigned long nrLookups = 0; void ExprSelect::eval(EvalState & state, Env & env, Value & v) { Root vTmp; Pos * pos2 = 0; Value * vAttrs = &*vTmp; e->eval(state, env, vTmp); try { for (auto & i : attrPath) { nrLookups++; Bindings::iterator j; Symbol name = getName(i, state, env); if (def) { state.forceValue(*vAttrs, pos); if (vAttrs->type != tAttrs || (j = vAttrs->attrs->find(name)) == vAttrs->attrs->end()) { def->eval(state, env, v); return; } } else { state.forceAttrs(*vAttrs, pos); if ((j = vAttrs->attrs->find(name)) == vAttrs->attrs->end()) throwEvalError("attribute '%1%' missing, at %2%", name, pos); } vAttrs = j->value; pos2 = j->pos; if (state.countCalls && pos2) state.attrSelects[*pos2]++; } state.forceValue(*vAttrs, ( pos2 != NULL ? *pos2 : this->pos ) ); } catch (Error & e) { if (pos2 && pos2->file != state.sDerivationNix) addErrorPrefix(e, "while evaluating the attribute '%1%' at %2%:\n", showAttrPath(state, env, attrPath), *pos2); throw; } v = *vAttrs; } void ExprOpHasAttr::eval(EvalState & state, Env & env, Value & v) { Root vTmp; Value * vAttrs = &*vTmp; e->eval(state, env, vTmp); for (auto & i : attrPath) { state.forceValue(*vAttrs); Bindings::iterator j; Symbol name = getName(i, state, env); if (vAttrs->type != tAttrs || (j = vAttrs->attrs->find(name)) == vAttrs->attrs->end()) { mkBool(v, false); return; } else { vAttrs = j->value; } } mkBool(v, true); } void ExprLambda::eval(EvalState & state, Env & env, Value & v) { v.type = tLambda; v.lambda.env = &env; v.lambda.fun = this; } void ExprApp::eval(EvalState & state, Env & env, Value & v) { /* FIXME: vFun prevents GCC from doing tail call optimisation. */ Root vFun; e1->eval(state, env, vFun); state.callFunction(vFun, *(e2->maybeThunk(state, env)), v, pos); } void EvalState::callPrimOp(Value & fun, Value & arg, Value & v, const Pos & pos) { /* Figure out the number of arguments still needed. */ size_t argsDone = 0; Value * primOp = &fun; while (primOp->type == tPrimOpApp) { argsDone++; primOp = primOp->app.left; } assert(primOp->type == tPrimOp); auto arity = primOp->primOp->arity; auto argsLeft = arity - argsDone; if (argsLeft == 1) { /* We have all the arguments, so call the primop. */ /* Put all the arguments in an array. */ Value * vArgs[arity]; auto n = arity - 1; vArgs[n--] = &arg; for (Value * arg = &fun; arg->type == tPrimOpApp; arg = arg->app.left) vArgs[n--] = arg->app.right; /* And call the primop. */ nrPrimOpCalls++; if (countCalls) primOpCalls[primOp->primOp->name]++; primOp->primOp->fun(*this, pos, vArgs, v); } else { auto fun2 = allocValue(); *fun2 = fun; v.app.left = fun2; v.app.right = &arg; v.type = tPrimOpApp; } } void EvalState::callFunction(Value & fun, Value & arg, Value & v, const Pos & pos) { forceValue(fun, pos); if (fun.type == tPrimOp || fun.type == tPrimOpApp) { callPrimOp(fun, arg, v, pos); return; } if (fun.type == tAttrs) { auto found = fun.attrs->find(sFunctor); if (found != fun.attrs->end()) { /* fun may be allocated on the stack of the calling function, * but for functors we may keep a reference, so heap-allocate * a copy and use that instead. */ auto fun2 = allocValue(); *fun2 = fun; /* !!! Should we use the attr pos here? */ Root v2; callFunction(*found->value, fun2, v2, pos); return callFunction(v2, arg, v, pos); } } if (fun.type != tLambda) throwTypeError("attempt to call something which is not a function but %1%, at %2%", fun, pos); ExprLambda & lambda(*fun.lambda.fun); auto size = (lambda.arg.empty() ? 0 : 1) + (lambda.matchAttrs ? lambda.formals->formals.size() : 0); auto env2 = allocEnv(size); env2->up = fun.lambda.env; size_t displ = 0; if (!lambda.matchAttrs) env2->values[displ++] = &arg; else { forceAttrs(arg, pos); if (!lambda.arg.empty()) env2->values[displ++] = &arg; /* For each formal argument, get the actual argument. If there is no matching actual argument but the formal argument has a default, use the default. */ size_t attrsUsed = 0; for (auto & i : lambda.formals->formals) { Bindings::iterator j = arg.attrs->find(i.name); if (j == arg.attrs->end()) { if (!i.def) throwTypeError("%1% called without required argument '%2%', at %3%", lambda, i.name, pos); env2->values[displ++] = i.def->maybeThunk(*this, env2); } else { attrsUsed++; env2->values[displ++] = j->value; } } /* Check that each actual argument is listed as a formal argument (unless the attribute match specifies a `...'). */ if (!lambda.formals->ellipsis && attrsUsed != arg.attrs->size()) { /* Nope, so show the first unexpected argument to the user. */ for (auto & i : *arg.attrs) if (lambda.formals->argNames.find(i.name) == lambda.formals->argNames.end()) throwTypeError("%1% called with unexpected argument '%2%', at %3%", lambda, i.name, pos); abort(); // can't happen } } nrFunctionCalls++; if (countCalls) incrFunctionCall(&lambda); /* Evaluate the body. This is conditional on showTrace, because catching exceptions makes this function not tail-recursive. */ if (settings.showTrace) try { lambda.body->eval(*this, env2, v); } catch (Error & e) { addErrorPrefix(e, "while evaluating %1%, called from %2%:\n", lambda, pos); throw; } else fun.lambda.fun->body->eval(*this, env2, v); } // Lifted out of callFunction() because it creates a temporary that // prevents tail-call optimisation. void EvalState::incrFunctionCall(ExprLambda * fun) { functionCalls[fun]++; } void EvalState::autoCallFunction(Bindings & args, Value & fun, Value & res) { forceValue(fun); if (fun.type == tAttrs) { auto found = fun.attrs->find(sFunctor); if (found != fun.attrs->end()) { auto v = allocValue(); callFunction(*found->value, fun, *v, noPos); forceValue(*v); return autoCallFunction(args, *v, res); } } if (fun.type != tLambda || !fun.lambda.fun->matchAttrs) { res = fun; return; } auto actualArgs = allocValue(); mkAttrs(*actualArgs, fun.lambda.fun->formals->formals.size()); for (auto & i : fun.lambda.fun->formals->formals) { Bindings::iterator j = args.find(i.name); if (j != args.end()) actualArgs->attrs->push_back(*j); else if (!i.def) throwTypeError("cannot auto-call a function that has an argument without a default value ('%1%')", i.name); } actualArgs->attrs->sort(); callFunction(fun, *actualArgs, res, noPos); } void ExprWith::eval(EvalState & state, Env & env, Value & v) { auto env2 = state.allocEnv(1, prevWith, tWithExprEnv); env2->up = &env; env2->values[0] = (Value *) attrs; body->eval(state, env2, v); } void ExprIf::eval(EvalState & state, Env & env, Value & v) { (state.evalBool(env, cond) ? then : else_)->eval(state, env, v); } void ExprAssert::eval(EvalState & state, Env & env, Value & v) { if (!state.evalBool(env, cond, pos)) throwAssertionError("assertion failed at %1%", pos); body->eval(state, env, v); } void ExprOpNot::eval(EvalState & state, Env & env, Value & v) { mkBool(v, !state.evalBool(env, e)); } void ExprOpEq::eval(EvalState & state, Env & env, Value & v) { Root v1; e1->eval(state, env, v1); Root v2; e2->eval(state, env, v2); mkBool(v, state.eqValues(v1, v2)); } void ExprOpNEq::eval(EvalState & state, Env & env, Value & v) { Root v1; e1->eval(state, env, v1); Root v2; e2->eval(state, env, v2); mkBool(v, !state.eqValues(v1, v2)); } void ExprOpAnd::eval(EvalState & state, Env & env, Value & v) { mkBool(v, state.evalBool(env, e1, pos) && state.evalBool(env, e2, pos)); } void ExprOpOr::eval(EvalState & state, Env & env, Value & v) { mkBool(v, state.evalBool(env, e1, pos) || state.evalBool(env, e2, pos)); } void ExprOpImpl::eval(EvalState & state, Env & env, Value & v) { mkBool(v, !state.evalBool(env, e1, pos) || state.evalBool(env, e2, pos)); } void ExprOpUpdate::eval(EvalState & state, Env & env, Value & v) { Root v1; Root v2; state.evalAttrs(env, e1, v1); state.evalAttrs(env, e2, v2); state.nrOpUpdates++; if (v1->attrs->size() == 0) { v = *v2; return; } if (v2->attrs->size() == 0) { v = *v1; return; } state.mkAttrs(v, v1->attrs->size() + v2->attrs->size()); /* Merge the sets, preferring values from the second set. Make sure to keep the resulting vector in sorted order. */ Bindings::iterator i = v1->attrs->begin(); Bindings::iterator j = v2->attrs->begin(); while (i != v1->attrs->end() && j != v2->attrs->end()) { if (i->name == j->name) { v.attrs->push_back(*j); ++i; ++j; } else if (i->name < j->name) v.attrs->push_back(*i++); else v.attrs->push_back(*j++); } while (i != v1->attrs->end()) v.attrs->push_back(*i++); while (j != v2->attrs->end()) v.attrs->push_back(*j++); state.nrOpUpdateValuesCopied += v.attrs->size(); } void ExprOpConcatLists::eval(EvalState & state, Env & env, Value & v) { Root v1; e1->eval(state, env, v1); Root v2; e2->eval(state, env, v2); Value * lists[2] = { &*v1, &*v2 }; state.concatLists(v, 2, lists, pos); } void EvalState::concatLists(Value & v, size_t nrLists, Value * * lists, const Pos & pos) { nrListConcats++; Value * nonEmpty = 0; size_t len = 0; for (size_t n = 0; n < nrLists; ++n) { forceList(*lists[n], pos); auto l = lists[n]->listSize(); len += l; if (l) nonEmpty = lists[n]; } if (nonEmpty && len == nonEmpty->listSize()) { v = *nonEmpty; return; } mkList(v, len); auto out = v.listElems(); for (size_t n = 0, pos = 0; n < nrLists; ++n) { auto l = lists[n]->listSize(); if (l) memcpy(out + pos, lists[n]->listElems(), l * sizeof(Value *)); pos += l; } } void ExprConcatStrings::eval(EvalState & state, Env & env, Value & v) { PathSet context; std::ostringstream s; NixInt n = 0; NixFloat nf = 0; bool first = !forceString; Tag firstType = tLongString; auto vTmp = state.allocValue(); for (auto & i : *es) { i->eval(state, env, vTmp); /* If the first element is a path, then the result will also be a path, we don't copy anything (yet - that's done later, since paths are copied when they are used in a derivation), and none of the strings are allowed to have contexts. */ if (first) { firstType = vTmp->isString() ? tLongString : vTmp->type; first = false; } if (firstType == tInt) { if (vTmp->type == tInt) { n += vTmp->integer; } else if (vTmp->type == tFloat) { // Upgrade the type from int to float; firstType = tFloat; nf = n; nf += vTmp->fpoint; } else throwEvalError("cannot add %1% to an integer, at %2%", showType(vTmp), pos); } else if (firstType == tFloat) { if (vTmp->type == tInt) { nf += vTmp->integer; } else if (vTmp->type == tFloat) { nf += vTmp->fpoint; } else throwEvalError("cannot add %1% to a float, at %2%", showType(vTmp), pos); } else s << state.coerceToString(pos, vTmp, context, false, firstType == tLongString); } if (firstType == tInt) mkInt(v, n); else if (firstType == tFloat) mkFloat(v, nf); else if (firstType == tPath) { if (!context.empty()) throwEvalError("a string that refers to a store path cannot be appended to a path, at %1%", pos); auto path = canonPath(s.str()); mkPath(v, path.c_str()); } else mkString(v, s.str(), context); } void ExprPos::eval(EvalState & state, Env & env, Value & v) { state.mkPos(v, &pos); } void EvalState::forceValueDeep(Value & v) { std::set seen; std::function recurse; recurse = [&](Value & v) { if (seen.find(&v) != seen.end()) return; seen.insert(&v); forceValue(v); if (v.type == tAttrs) { for (auto & i : *v.attrs) try { recurse(*i.value); } catch (Error & e) { addErrorPrefix(e, "while evaluating the attribute '%1%' at %2%:\n", i.name, *i.pos); throw; } } else if (v.isList()) { for (size_t n = 0; n < v.listSize(); ++n) recurse(*v.listElems()[n]); } }; recurse(v); } NixInt EvalState::forceInt(Value & v, const Pos & pos) { forceValue(v, pos); if (v.type != tInt) throwTypeError("value is %1% while an integer was expected, at %2%", v, pos); return v.integer; } NixFloat EvalState::forceFloat(Value & v, const Pos & pos) { forceValue(v, pos); if (v.type == tInt) return v.integer; else if (v.type != tFloat) throwTypeError("value is %1% while a float was expected, at %2%", v, pos); return v.fpoint; } bool EvalState::forceBool(Value & v, const Pos & pos) { forceValue(v); if (v.type != tBool) throwTypeError("value is %1% while a Boolean was expected, at %2%", v, pos); return v.boolean; } bool EvalState::isFunctor(Value & fun) { return fun.type == tAttrs && fun.attrs->find(sFunctor) != fun.attrs->end(); } void EvalState::forceFunction(Value & v, const Pos & pos) { forceValue(v); if (v.type != tLambda && v.type != tPrimOp && v.type != tPrimOpApp && !isFunctor(v)) throwTypeError("value is %1% while a function was expected, at %2%", v, pos); } string EvalState::forceString(Value & v, const Pos & pos) { forceValue(v, pos); if (!v.isString()) { if (pos) throwTypeError("value is %1% while a string was expected, at %2%", v, pos); else throwTypeError("value is %1% while a string was expected", v); } return string(v.getString()); // FIXME: don't copy } string EvalState::forceString(Value & v, PathSet & context, const Pos & pos) { string s = forceString(v, pos); v.getContext(context); return s; } string EvalState::forceStringNoCtx(Value & v, const Pos & pos) { string s = forceString(v, pos); if (v.type == tLongString && v.string.context) { PathSet context; v.getContext(context); if (pos) throwEvalError("the string '%1%' is not allowed to refer to a store path (such as '%2%'), at %3%", v.getString(), *context.begin(), pos); else throwEvalError("the string '%1%' is not allowed to refer to a store path (such as '%2%')", v.getString(), *context.begin()); } return s; } bool EvalState::isDerivation(Value & v) { if (v.type != tAttrs) return false; Bindings::iterator i = v.attrs->find(sType); if (i == v.attrs->end()) return false; forceValue(*i->value); if (!i->value->isString()) return false; return strcmp(i->value->getString(), "derivation") == 0; } string EvalState::coerceToString(const Pos & pos, Value & v, PathSet & context, bool coerceMore, bool copyToStore) { forceValue(v); string s; if (v.isString()) { v.getContext(context); return v.getString(); } if (v.type == tPath) { Path path(canonPath(v.path)); return copyToStore ? copyPathToStore(context, path) : path; } if (v.type == tAttrs) { auto i = v.attrs->find(sToString); if (i != v.attrs->end()) { auto v1 = allocValue(); callFunction(*i->value, v, v1, pos); return coerceToString(pos, v1, context, coerceMore, copyToStore); } i = v.attrs->find(sOutPath); if (i == v.attrs->end()) throwTypeError("cannot coerce a set to a string, at %1%", pos); return coerceToString(pos, *i->value, context, coerceMore, copyToStore); } #if 0 if (v.type == tExternal) return v.external->coerceToString(pos, context, coerceMore, copyToStore); #endif if (coerceMore) { /* Note that `false' is represented as an empty string for shell scripting convenience, just like `null'. */ if (v.type == tBool && v.boolean) return "1"; if (v.type == tBool && !v.boolean) return ""; if (v.type == tInt) return std::to_string(v.integer); if (v.type == tFloat) return std::to_string(v.fpoint); if (v.type == tNull) return ""; if (v.isList()) { string result; for (size_t n = 0; n < v.listSize(); ++n) { result += coerceToString(pos, *v.listElems()[n], context, coerceMore, copyToStore); if (n < v.listSize() - 1 /* !!! not quite correct */ && (!v.listElems()[n]->isList() || v.listElems()[n]->listSize() != 0)) result += " "; } return result; } } throwTypeError("cannot coerce %1% to a string, at %2%", v, pos); } string EvalState::copyPathToStore(PathSet & context, const Path & path) { if (nix::isDerivation(path)) throwEvalError("file names are not allowed to end in '%1%'", drvExtension); Path dstPath; if (srcToStore[path] != "") dstPath = srcToStore[path]; else { dstPath = settings.readOnlyMode ? store->computeStorePathForPath(baseNameOf(path), checkSourcePath(path)).first : store->addToStore(baseNameOf(path), checkSourcePath(path), true, htSHA256, defaultPathFilter, repair); srcToStore[path] = dstPath; printMsg(lvlChatty, format("copied source '%1%' -> '%2%'") % path % dstPath); } context.insert(dstPath); return dstPath; } Path EvalState::coerceToPath(const Pos & pos, Value & v, PathSet & context) { string path = coerceToString(pos, v, context, false, false); if (path == "" || path[0] != '/') throwEvalError("string '%1%' doesn't represent an absolute path, at %2%", path, pos); return path; } bool EvalState::eqValues(Value & v1, Value & v2) { forceValue(v1); forceValue(v2); /* !!! Hack to support some old broken code that relies on pointer equality tests between sets. (Specifically, builderDefs calls uniqList on a list of sets.) Will remove this eventually. */ if (&v1 == &v2) return true; // Special case type-compatibility between float and int if (v1.type == tInt && v2.type == tFloat) return v1.integer == v2.fpoint; if (v1.type == tFloat && v2.type == tInt) return v1.fpoint == v2.integer; if (v1.isString()) return v2.isString() && strcmp(v1.getString(), v2.getString()) == 0; // All other types are not compatible with each other. if (v1.type != v2.type) return false; switch (v1.type) { case tInt: return v1.integer == v2.integer; case tBool: return v1.boolean == v2.boolean; case tPath: return strcmp(v1.path, v2.path) == 0; case tNull: return true; case tList0: case tList1: case tList2: case tListN: if (v1.listSize() != v2.listSize()) return false; for (size_t n = 0; n < v1.listSize(); ++n) if (!eqValues(*v1.listElems()[n], *v2.listElems()[n])) return false; return true; case tAttrs: { /* If both sets denote a derivation (type = "derivation"), then compare their outPaths. */ if (isDerivation(v1) && isDerivation(v2)) { Bindings::iterator i = v1.attrs->find(sOutPath); Bindings::iterator j = v2.attrs->find(sOutPath); if (i != v1.attrs->end() && j != v2.attrs->end()) return eqValues(*i->value, *j->value); } if (v1.attrs->size() != v2.attrs->size()) return false; /* Otherwise, compare the attributes one by one. */ Bindings::iterator i, j; for (i = v1.attrs->begin(), j = v2.attrs->begin(); i != v1.attrs->end(); ++i, ++j) if (i->name != j->name || !eqValues(*i->value, *j->value)) return false; return true; } /* Functions are incomparable. */ case tLambda: case tPrimOp: case tPrimOpApp: return false; #if 0 case tExternal: return *v1.external == *v2.external; #endif case tFloat: return v1.fpoint == v2.fpoint; default: throwEvalError("cannot compare %1% with %2%", showType(v1), showType(v2)); } } void EvalState::printStats() { bool showStats = getEnv("NIX_SHOW_STATS", "0") != "0"; struct rusage buf; getrusage(RUSAGE_SELF, &buf); float cpuTime = buf.ru_utime.tv_sec + ((float) buf.ru_utime.tv_usec / 1000000); uint64_t bEnvs = nrEnvs * sizeof(Env) + nrValuesInEnvs * sizeof(Value *); uint64_t bLists = nrListElems * sizeof(Value *); uint64_t bValues = nrValues * sizeof(Value); uint64_t bAttrsets = nrAttrsets * sizeof(Bindings) + nrAttrsInAttrsets * sizeof(Attr); if (showStats) { auto outPath = getEnv("NIX_SHOW_STATS_PATH","-"); std::fstream fs; if (outPath != "-") fs.open(outPath, std::fstream::out); JSONObject topObj(outPath == "-" ? std::cerr : fs, true); topObj.attr("cpuTime",cpuTime); { auto envs = topObj.object("envs"); envs.attr("number", nrEnvs); envs.attr("elements", nrValuesInEnvs); envs.attr("bytes", bEnvs); } { auto lists = topObj.object("list"); lists.attr("elements", nrListElems); lists.attr("bytes", bLists); lists.attr("concats", nrListConcats); } { auto values = topObj.object("values"); values.attr("number", nrValues); values.attr("bytes", bValues); } { auto syms = topObj.object("symbols"); syms.attr("number", symbols.size()); syms.attr("bytes", symbols.totalSize()); } { auto sets = topObj.object("sets"); sets.attr("number", nrAttrsets); sets.attr("bytes", bAttrsets); sets.attr("elements", nrAttrsInAttrsets); } { auto sizes = topObj.object("sizes"); sizes.attr("Env", sizeof(Env)); sizes.attr("Value", sizeof(Value)); sizes.attr("Bindings", sizeof(Bindings)); sizes.attr("Attr", sizeof(Attr)); } topObj.attr("nrOpUpdates", nrOpUpdates); topObj.attr("nrOpUpdateValuesCopied", nrOpUpdateValuesCopied); topObj.attr("nrThunks", nrThunks); topObj.attr("nrAvoided", nrAvoided); topObj.attr("nrLookups", nrLookups); topObj.attr("nrPrimOpCalls", nrPrimOpCalls); topObj.attr("nrFunctionCalls", nrFunctionCalls); topObj.attr("stringBytes", stringBytes); if (countCalls) { { auto obj = topObj.object("primops"); for (auto & i : primOpCalls) obj.attr(i.first, i.second); } { auto list = topObj.list("functions"); for (auto & i : functionCalls) { auto obj = list.object(); if (i.first->name.set()) obj.attr("name", (const string &) i.first->name); else obj.attr("name", nullptr); if (i.first->pos) { obj.attr("file", (const string &) i.first->pos.file); obj.attr("line", i.first->pos.line); obj.attr("column", i.first->pos.column); } obj.attr("count", i.second); } } { auto list = topObj.list("attributes"); for (auto & i : attrSelects) { auto obj = list.object(); if (i.first) { obj.attr("file", (const string &) i.first.file); obj.attr("line", i.first.line); obj.attr("column", i.first.column); } obj.attr("count", i.second); } } } if (getEnv("NIX_SHOW_SYMBOLS", "0") != "0") { auto list = topObj.list("symbols"); symbols.dump([&](const std::string & s) { list.elem(s); }); } } } // FIXME: move to gc.cc and make generic. size_t valueSize(Value & v) { std::set seen; auto doString = [&](const char * s) -> size_t { if (seen.find(s) != seen.end()) return 0; seen.insert(s); return strlen(s) + 1; }; std::function doValue; std::function doEnv; doValue = [&](Value & v) -> size_t { if (seen.find(&v) != seen.end()) return 0; seen.insert(&v); size_t sz = sizeof(Value); switch (v.type) { case tLongString: sz += v.string.s->words() * WORD_SIZE; break; case tPath: sz += doString(v.path); break; case tAttrs: if (seen.find(v.attrs) == seen.end()) { seen.insert(v.attrs); sz += sizeof(Bindings) + sizeof(Attr) * v.attrs->capacity(); for (auto & i : *v.attrs) sz += doValue(*i.value); } break; case tList0: case tList1: case tList2: case tListN: if (seen.find(v.listElems()) == seen.end()) { seen.insert(v.listElems()); sz += v.listSize() * sizeof(Value *); for (size_t n = 0; n < v.listSize(); ++n) sz += doValue(*v.listElems()[n]); } break; case tThunk: sz += doEnv(*v.thunk.env); break; case tApp: sz += doValue(*v.app.left); sz += doValue(*v.app.right); break; case tLambda: sz += doEnv(*v.lambda.env); break; case tPrimOpApp: sz += doValue(*v.app.left); sz += doValue(*v.app.right); break; #if 0 case tExternal: if (seen.find(v.external) != seen.end()) break; seen.insert(v.external); sz += v.external->valueSize(seen); break; #endif default: ; } return sz; }; doEnv = [&](Env & env) -> size_t { if (seen.find(&env) != seen.end()) return 0; seen.insert(&env); size_t sz = sizeof(Env) + sizeof(Value *) * env.getSize(); if (env.type != tWithExprEnv) for (size_t i = 0; i < env.getSize(); ++i) if (env.values[i]) sz += doValue(*env.values[i]); if (env.up) sz += doEnv(*env.up); return sz; }; return doValue(v); } #if 0 string ExternalValueBase::coerceToString(const Pos & pos, PathSet & context, bool copyMore, bool copyToStore) const { throw TypeError(format("cannot coerce %1% to a string, at %2%") % showType() % pos); } bool ExternalValueBase::operator==(const ExternalValueBase & b) const { return false; } std::ostream & operator << (std::ostream & str, const ExternalValueBase & v) { return v.print(str); } #endif EvalSettings evalSettings; static GlobalConfig::Register r1(&evalSettings); }